
DeviceNet
NI-DNET™ Programmer
Reference Manual

NI-DNET Programmer Reference Manual

April 1998 Edition
Part Number 321863A-01

Internet Support
E-mail: support@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

Bulletin Board Support
BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725 725 11,
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 413091,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200,
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1998 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’ S RIGHT TO RECOVER DAMAGES CAUSED
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE
CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS,
OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties,
or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

Trademarks
BridgeVIEW™, LabVIEW™, CVI™, natinst.com™, and NI-DNET™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the
user or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

© National Instruments Corporation v NI-DNET Programmer Reference Manual

Contents

About This Manual
How to Use the Manual Set ... ix
Organization of This Manual ...x
Conventions Used in This Manual...x
Related Documentation..xi
Customer Communication ...xi

Chapter 1
NI-DNET Data Types

Chapter 2
NI-DNET Functions

Using the Function Descriptions..2-1
List of NI-DNET Functions...2-2
DeviceNet Error Handler ...2-4
ncCloseObject (Close) ...2-7
ncConvertForDnetWrite (Convert For DeviceNet Write) ...2-9
ncConvertFromDnetRead (Convert From DeviceNet Read)...2-16
ncCreateNotification (Create Notification) ...2-23
ncCreateOccurrence (Create Occurrence) ...2-32
ncGetDnetAttribute (Get DeviceNet Attribute)...2-37
ncGetDriverAttr (Get Driver Attribute)...2-43
ncOpenDnetExplMsg (Open DeviceNet Explicit Messaging) ..2-46
ncOpenDnetIntf (Open DeviceNet Interface)..2-49
ncOpenDnetIO (Open DeviceNet I/O) ..2-55
ncOperateDnetIntf (Operate DeviceNet Interface)..2-65
ncReadDnetExplMsg (Read DeviceNet Explicit Message) ..2-69
ncReadDnetIO (Read DeviceNet I/O) ...2-73
ncSetDnetAttribute (Set DeviceNet Attribute) ..2-76
ncSetDriverAttr (Set Driver Attribute) ..2-82
ncStatusToString (Status To String) ..2-85
ncWaitForState (Wait For State) ...2-88
ncWriteDnetExplMsg (Write DeviceNet Explicit Message)...2-94
ncWriteDnetIO (Write DeviceNet I/O) ...2-99

Contents

NI-DNET Programmer Reference Manual vi © National Instruments Corporation

Chapter 3
NI-DNET Objects

Explicit Messaging Object .. 3-2
Interface Object ...3-6
I/O Object .. 3-9

Appendix A
Status Handling and Error Codes

Handling Status in G (LabVIEW/BridgeVIEW)... A-1
Checking Status... A-1
Status Format .. A-2

Handling Status in C.. A-3
Checking Status... A-3
Status Format .. A-4

NI-DNET Status Codes and Qualifiers ... A-6
NC_SUCCESS (0000 Hex) .. A-7
NC_ERR_TIMEOUT (0001 Hex) .. A-7
NC_ERR_DRIVER (0002 Hex) ... A-8
NC_ERR_BAD_PARAM (0004 Hex) ... A-9
NC_ERR_NOT_STOPPED (0007 Hex) .. A-10
NC_ERR_OLD_DATA (0009 Hex)... A-10
NC_ERR_DEVICE_INIT (0010 Hex) ... A-11
NC_ERR_NOT_SUPPORTED (000A Hex) .. A-15
NC_ERR_CAN_COMM (000B Hex) .. A-15
NC_ERR_NOT_STARTED (000C Hex) ... A-17
NC_ERR_RSRC_LIMITS (000D Hex).. A-17
NC_ERR_READ_NOT_AVAIL (000E Hex) .. A-18
NC_ERR_BAD_NET_ID (000F Hex) ... A-19
NC_ERR_DEVICE_MISSING (0011 Hex)... A-20
NC_ERR_FRAGMENTATION (0012 Hex).. A-20
NC_ERR_DNET_ERR_RESP (0014 Hex) .. A-21

Appendix B
Customer Communication

Glossary

Contents

© National Instruments Corporation vii NI-DNET Programmer Reference Manual

Figures
Figure A-1. NI-DNET Error Cluster Example..A-2
Figure A-2. Error Cluster Code Field ...A-3
Figure A-3. Status Format in C...A-5

Tables
Table 1-1. NI-DNET Data Types ..1-1

Table 2-1. NI-DNET Functions ...2-2

Table A-1. Determining Severity of Status ...A-5
Table A-2. Summary of Status Codes ..A-6

© National Instruments Corporation ix NI-DNET Programmer Reference Manual

About This Manual

This manual is a programming reference for functions, objects, and
data types in the NI-DNET software for Win32, the 32-bit programming
environment of Windows 95/98 and Windows NT. The NI-DNET software
is meant to be used with either Windows 95, Windows 98, or Windows NT
version 3.51 or later. This manual assumes that you are already familiar
with the Windows system you are using.

How to Use the Manual Set

Use the getting started manual to install and configure your DeviceNet
hardware and NI-DNET software.

Use the NI-DNET User Manual to learn the basics of NI-DNET and how to
develop an application program. The user manual also contains detailed
examples.

Use this NI-DNET Programmer Reference Manual for specific information
about each NI-DNET function and object, including format, parameters,
and possible errors.

NI-DNET
User Manual

Application
Development
and Examples

First-Time
NI-DNET Users

Experienced
NI-DNET Users

Getting Started
Manual

Installation and
Configuration

NI-DNET
Programmer

Reference Manual

Function
and Object

Descriptions

About This Manual

NI-DNET Programmer Reference Manual x © National Instruments Corporation

Organization of This Manual
This manual is organized as follows:

• Chapter 1, NI-DNET Data Types, describes the data types used by
NI-DNET functions and objects.

• Chapter 2, NI-DNET Functions, lists all NI-DNET functions and
describes the purpose, format, parameters, and return status for each
function.

• Chapter 3, NI-DNET Objects, describes each NI-DNET object, lists
the functions which can be used with the object, and describes each of
the object’s driver attributes.

• Appendix A, Status Handling and Error Codes, describes how to
handle NI-DNET status in your application and the encoding of
NI-DNET status values.

• Appendix B, Customer Communication, contains forms you can use to
request help from National Instruments or to comment on our products
and manuals.

• The Glossary contains an alphabetical list and description of terms
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

Conventions Used in This Manual
The following conventions are used in this manual:

italic Italic text denotes emphasis, a cross reference, or an introduction to a key
concept. This font also denotes text for which you supply the appropriate
word or value, such as in Windows 3.x.

monospace Text in this font denotes text or characters that you should literally
enter from the keyboard, sections of code, programming examples, and
syntax examples. This font also is used for the proper names of disk drives,
paths, directories, programs, subprograms, subroutines, device names,
functions, operations, parameters, variables, filenames, and extensions, and
for statements and comments taken from program code.

monospace italic Italic text in this font denotes that you must supply the appropriate words
or values in the place of these items.

About This Manual

© National Instruments Corporation xi NI-DNET Programmer Reference Manual

Related Documentation
The following documents contain information that you may find helpful as
you read this manual:

• CAN Specification Version 2.0, 1991, Robert Bosch Gmbh., Postfach
500, D-7000 Stuttgart 1

• DeviceNet Specification, Volumes 1 and 2, Version 2.0, Open
DeviceNet Vendor Association

• LabVIEW Online Reference

• Microsoft Win32 Software Development Kit (SDK) online help

Customer Communication
National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with
our products, and we want to help if you have problems with them.
To make it easy for you to contact us, this manual contains comment
and configuration forms for you to complete. These forms are in
Appendix B, Customer Communication, at the end of this manual.

© National Instruments Corporation 1-1 NI-DNET Programmer Reference Manual

1
NI-DNET Data Types

This chapter describes the data types used by NI-DNET functions and objects.

The NI-DNET data types provide consistency for various programming environments and
facilitate access to the DeviceNet network. In general, all NI-DNET data types begin with
NCTYPE_.

Table 1-1 lists each NI-DNET data type, its equivalent data type in ANSI C, LabVIEW, and
DeviceNet, and a brief description.

Table 1-1. NI-DNET Data Types

NI-DNET
Data Type ANSI C LabVIEW DeviceNet Description

NCTYPE_type _P NCTYPE_type * N/A N/A Pointer to a variable with
type type .

NCTYPE_INT8 signed char I8 SINT 8-bit signed integer.

NCTYPE_INT16 signed short I16 INT 16-bit signed integer.

NCTYPE_INT32 signed long I32 DINT 32-bit signed integer.

NCTYPE_UINT8 unsigned char U8 USINT 8-bit unsigned integer.

NCTYPE_UINT16 unsigned short U16 UINT 16-bit unsigned integer.

NCTYPE_UINT32 unsigned long U32 UDINT 32-bit unsigned integer.

NCTYPE_BOOL NCTYPE_UINT8 TF (boolean) BOOL Boolean value. In ANSI C,
constants NC_TRUE (1)
and NC_FALSE (0) are
used for comparisons.

NCTYPE_STRING char * , array of
characters terminated
by null character \0

abc (string) STRING ASCII character string.

NCTYPE_REAL float SGL REAL 32-bit floating point.

NCTYPE_LREAL double DBL LREAL 64-bit floating point.

Chapter 1 NI-DNET Data Types

NI-DNET Programmer Reference Manual 1-2 © National Instruments Corporation

NCTYPE_ANY_P void * N/A N/A Reference to variable of
unknown type, used in cases
where actual data type may
vary depending on particular
context.

NCTYPE_OBJH NCTYPE_UINT32 Type definition
ncObjHandle.ctl
(U32)

N/A Handle referring to an
NI-DNET object. Refer to
ncOpenDnetExplMsg,
ncOpenDnetIntf , and
ncOpenDnetIO in
Chapter 2, NI-DNET
Functions.

NCTYPE_VERSION NCTYPE_UINT32 U32 N/A Version number. Major,
minor, subminor, and beta
version numbers are encoded
in unsigned 32-bit integer
from high byte to low byte.
Letters are encoded as
numeric equivalents (‘A’ is 1,
‘Z’ is 26, etc.). Version 2.0B
would be hexadecimal
02000200 , and Beta
version 1.4.2 beta 7 would be
hex 01040207 .

NCTYPE_DURATION NCTYPE_UINT32 U32 N/A Time duration indicating
elapsed time between two
events. Time is expressed
in 1 ms increments. (For
example, 10 s is10,000 .)
Special constant
NC_DURATION_NONE (0)
is used for zero duration, and
NC_DURATION_
INFINITE (FFFFFFFF
hex) is used for infinite
duration.

NCTYPE_ATTRID NCTYPE_UINT32 U32 N/A Identifier used to access
internal attributes in the
NI-DNET device driver (not
attributes in DeviceNet
devices). Refer to Chapter 3,
NI-DNET Objects.

Table 1-1. NI-DNET Data Types (Continued)

NI-DNET
Data Type ANSI C LabVIEW DeviceNet Description

Chapter 1 NI-DNET Data Types

© National Instruments Corporation 1-3 NI-DNET Programmer Reference Manual

NCTYPE_OPCODE NCTYPE_UINT32 U32 N/A Operation code used with
ncOperateDnetIntf
function.

NCTYPE_STATE NCTYPE_UINT32 U32 N/A Object states, encoded as
32-bit mask (one bit for each
state). For information, refer
to ncWaitForState in
Chapter 2, NI-DNET
Functions.

NCTYPE_STATUS NCTYPE_INT32 I32 N/A Status returned from all
NI-DNET functions. Status
is zero for success, less than
zero for an error, and greater
than zero for a warning.
Refer to Appendix A, Status
Handling and Error Codes.

Table 1-1. NI-DNET Data Types (Continued)

NI-DNET
Data Type ANSI C LabVIEW DeviceNet Description

© National Instruments Corporation 2-1 NI-DNET Programmer Reference Manual

2
NI-DNET Functions

This chapter lists all NI-DNET functions and describes the purpose, format, parameters, and
return status for each function.

Unless otherwise stated, each NI-DNET function suspends execution of your program until
it completes.

Using the Function Descriptions
This chapter lists the NI-DNET functions alphabetically. The description of each function is
structured as follows:

Purpose
States the function’s purpose.

Format
Describes the function’s format for the LabVIEW (and BridgeVIEW) and C (including C++)
programming languages.

Input
Lists the function’s input parameters. Input parameters are the values passed into the function.

Output
Lists the function’s output parameters. Output parameters are the values passed out of the
function.

Function Description
Provides details about the function’s purpose and effect.

Parameter Description
Provides details about each input/output parameter, including allowed values and their
meanings.

Chapter 2 NI-DNET Functions — List of NI-DNET Functions

NI-DNET Programmer Reference Manual 2-2 © National Instruments Corporation

Return Status
Lists all possible return status codes. For complete information on status format and the
qualifiers used with each status code, refer to Appendix A, Status Handling and Error Codes.

For LabVIEW, the Error in and Error out parameters are not described in the function
lists of this chapter. For information on status handling for LabVIEW, refer to Appendix A,
Status Handling and Error Codes.

Examples
Each function description includes sample LabVIEW and C code showing how to use the
function. For more detailed examples, refer to the example programs included with your
NI-DNET software. The example programs are described in Chapter 4, Application
Examples, in the NI-DNET User Manual.

List of NI-DNET Functions
Table 2-1 contains an alphabetical list of the NI-DNET functions.

Table 2-1. NI-DNET Functions

Function Purpose

DeviceNet Error Handler Convert status returned from an NI-DNET function
into a descriptive string (LabVIEW only)

ncCloseObject (Close) Close an NI-DNET object

ncConvertForDnetWrite
(Convert for DeviceNet Write)

Convert an appropriate LabVIEW data type for
writing data bytes on the DeviceNet network

ncConvertFromDnetRead
(Convert From DeviceNet Read)

Convert data from the DeviceNet network into an
appropriate LabVIEW data type

ncCreateNotification
(Create Notification)

Create a notification callback for an object (C only)

ncCreateOccurrence
(Create Occurrence)

Create a notification occurrence for an object
(LabVIEW only)

ncGetDnetAttribute
(Get DeviceNet Attribute)

Get an attribute value from a DeviceNet device
using an Explicit Messaging Object

ncGetDriverAttr
(Get Driver Attribute)

Get the value of an attribute in the NI-DNET driver

Chapter 2 NI-DNET Functions — List of NI-DNET Functions

© National Instruments Corporation 2-3 NI-DNET Programmer Reference Manual

ncOpenDnetExplMsg (Open
DeviceNet Explicit Messaging)

Configure and open an NI-DNET Explicit
Messaging Object

ncOpenDnetIntf
(Open DeviceNet Interface)

Configure and open an NI-DNET Interface Object

ncOpenDnetIO
(Open DeviceNet I/O)

Configure and open an NI-DNET I/O Object

ncOperateDnetIntf (Operate
DeviceNet Interface)

Perform an operation on an NI-DNET Interface
Object

ncReadDnetExplMsg (Read
DeviceNet Explicit Message)

Read an explicit message response from an Explicit
Messaging Object

ncReadDnetIO
(Read DeviceNet I/O)

Read input from an I/O Object

ncSetDnetAttribute
(Set DeviceNet Attribute)

Set an attribute value for a DeviceNet device using
an Explicit Messaging Object

ncSetDriverAttr
(Set Driver Attribute)

Set the value of an attribute in the NI-DNET driver

ncStatusToString
(Status to String)

Convert status returned from an NI-DNET function
into a descriptive string (C only)

ncWaitForState
(Wait for State)

Wait for one or more states to occur in an object

ncWriteDnetExplMsg (Write
DeviceNet Explicit Message)

Write an explicit message request using an Explicit
Messaging Object

ncWriteDnetIO
(Write DeviceNet I/O)

Write output to an I/O Object

Table 2-1. NI-DNET Functions (Continued)

Function Purpose

Chapter 2 NI-DNET Functions — DeviceNet Error Handler

NI-DNET Programmer Reference Manual 2-4 © National Instruments Corporation

DeviceNet Error Handler

Purpose
Convert status returned from an NI-DNET function into a descriptive string.

Format
LabVIEW

C
Not applicable; see ncStatusToString (Status To String)

Input
Error in NI-DNET Error Cluster input

Show Error Dialog (F) Boolean indicating whether to show a dialog box for an
error (default is false)

Output
Error String Textual string which describes the contents of the

NI-DNET Error Cluster

Error out NI-DNET Error Cluster output

Function Description
Each LabVIEW NI-DNET function uses an Error Cluster to indicate the status of the function
call. This Error Cluster encodes the severity of the error (success, warning, or error), a primary
error code, and a qualifier for the error code. For example, if NI-DNET cannot initialize
communication with a device, the status field is true (indicating an error severity), the lower
bits of code indicate the NC_ERR_DEVICE_INIT error code, and the higher bits of code
indicate the exact cause of the initialization problem.

Within your LabVIEW block diagram, you wire the Error in and Error out terminals of
NI-DNET functions together in succession. When DeviceNet Error Handler detects an
error in an NI-DNET function (status field true), all NI-DNET functions wired together are
skipped except for ncCloseObject . The ncCloseObject function executes regardless of
whether an error occurred, thus ensuring that all NI-DNET objects are closed properly when

Chapter 2 NI-DNET Functions — DeviceNet Error Handler

© National Instruments Corporation 2-5 NI-DNET Programmer Reference Manual

execution stops due to an error. Depending on how you want to handle errors, you can wire
the Error in and Error out terminals together per-object (group a single open/close pair),
per-device (group together Explicit Messaging and I/O Objects for a given device), or
per-network (group all functions for a given interface).

This function converts an NI-DNET Error Cluster into a descriptive string. By displaying this
string when DeviceNet Error Handler detects an error or warning, you can avoid
interpretation of individual fields of the Error Cluster to debug the problem. You normally
wire the Error in terminal of this function from the Error out terminal of an
ncCloseObject function.

To display an NI-DNET Error Cluster description without interrupting execution of other
code, you normally wire the Error out and Error String output terminals of this
function to front panel indicators. If you want to interrupt execution and display a dialog box
describing the error, set Show Error Dialog to true instead of using front panel indicators.

The DeviceNet Error Handler function does not apply to C language programming. Use
the C language ncStatusToString function to convert an NI-DNET status value into a
descriptive string.

For more information on NI-DNET status, including overall status handling, the encoding of
fields in the Error Cluster, and problem resolutions for each error, refer to Appendix A, Status
Handling and Error Codes.

Parameter Descriptions
Error in

Description This NI-DNET Error Cluster input is used much like other NI-DNET
functions. You normally wire it from the Error out terminal of an
ncCloseObject function.

Values NI-DNET Error Cluster

Chapter 2 NI-DNET Functions — DeviceNet Error Handler

NI-DNET Programmer Reference Manual 2-6 © National Instruments Corporation

Show Error Dialog (F)

Error out

Error String

Return Status
The NI-DNET Error Cluster is passed through this function unchanged.

Example
Using LabVIEW, check the NI-DNET Error Cluster returned from the ncCloseObject
function, and display the Error Cluster and a descriptive string using front panel indicators.

Description Boolean indicating whether to show a dialog box for an error or warning.

To display an NI-DNET Error Cluster description without interrupting
execution of other code, set this input terminal to false (or unwired), and
wire the Error out and Error String output terminals of this
function to front panel indicators.

If you want to interrupt execution and display a dialog box describing
the error or warning, set Show Error Dialog to true instead of using
front panel indicators. This causes a dialog box to display a description
of any error or warning that occurs.

Values T or F (F is default if unwired)

Description Use this NI-DNET Error Cluster output much like other NI-DNET
functions. It is unchanged from the Error in terminal and is normally
wired to a front panel indicator.

Values NI-DNET Error Cluster

Description Textual string which describes the contents of the NI-DNET Error
Cluster. You usually wire this string to a front panel indicator.

Values Textual string which describes the contents of the NI-DNET Error
Cluster

Chapter 2 NI-DNET Functions — ncCloseObject (Close)

© National Instruments Corporation 2-7 NI-DNET Programmer Reference Manual

ncCloseObject (Close)

Purpose
Close an NI-DNET object.

Format
LabVIEW

C
NCTYPE_STATUS ncCloseObject(NCTYPE_OBJH ObjHandle)

Input
ObjHandle Object handle of an open Interface Object, Explicit

Messaging Object, or I/O Object

Output
None

Function Description
The ncCloseObject function closes an NI-DNET object when it no longer needs to be in
use, such as when the application is about to terminate. When an object is closed, NI-DNET
stops all pending operations for the object, and you can no longer use the ObjHandle in your
application.

If the object specified by ObjHandle has a notification pending, this function disables the
notification by implicitly calling either ncCreateNotification or
ncCreateOccurrence with DesiredState zero.

When ncCloseObject has been called for all open NI-DNET objects, NI-DNET stops all
DeviceNet communication (ncCloseObject issues an implicit call to
ncOperateDnetIntf with Opcode NC_OP_STOP).

Chapter 2 NI-DNET Functions — ncCloseObject (Close)

NI-DNET Programmer Reference Manual 2-8 © National Instruments Corporation

Parameter Descriptions
ObjHandle

Return Status
For information about converting the return status into a descriptive string, refer to
Appendix A, Status Handling and Error Codes.

NC_SUCCESS Success (no warning or error)

NC_ERR_BAD_PARAM Invalid parameter

NC_ERR_DRIVER Implementation-specific error in the NI-DNET driver

Examples
• Using LabVIEW, close an NI-DNET object.

• Using C, close an NI-DNET object.

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

status = ncCloseObject (objh);

Description This parameter must contain an object handle returned from the
ncOpenDnetIntf , ncOpenDnetExplMsg , or ncOpenDnetIO
function.

Values The encoding of ObjHandle is internal to NI-DNET.

Chapter 2 NI-DNET Functions — ncConvertForDnetWrite (Convert For DeviceNet Write)

© National Instruments Corporation 2-9 NI-DNET Programmer Reference Manual

ncConvertForDnetWrite (Convert For DeviceNet Write)

Purpose
Convert an appropriate LabVIEW data type for writing data bytes on the DeviceNet network.

Format
LabVIEW

C
Not applicable, but see Examples at the end of this section

Input
DnetData in Initial data bytes to write on the DeviceNet network

DnetType DeviceNet data type to convert into

ByteOffset Byte offset of the DeviceNet member to convert into

8[TF] in LabVIEW array of 8 TF to convert from

I32/I16/I8 in LabVIEW I32 , I16 , or I8 to convert from

U32/U16/U8 in LabVIEW U32, U16, or U8 to convert from

DBL/SGL in LabVIEW DBL or SGL to convert from

abc in LabVIEW string to convert from

Output
DnetData out DeviceNet data bytes (with member inserted)

Function Description
Many fundamental differences exist between the encoding of a DeviceNet data type and its
equivalent data type in LabVIEW. For example, for a 32-bit integer, the DeviceNet DINT data
type uses Intel byte ordering (lowest byte first), and the equivalent LabVIEW I32 data type
uses Motorola byte ordering (highest byte first).

Chapter 2 NI-DNET Functions — ncConvertForDnetWrite (Convert For DeviceNet Write)

NI-DNET Programmer Reference Manual 2-10 © National Instruments Corporation

This function takes an initial sequence of bytes to write on the DeviceNet network, and given
the byte offset and DeviceNet data type for a specific data member, converts an appropriate
LabVIEW data type for placement into those data bytes. You provide initial data bytes using
DnetData in , convert a LabVIEW data type for each data member changed by your
LabVIEW program (possibly replacing all initial bytes with LabVIEW data), then write the
bytes onto the DeviceNet network.

You typically use ncConvertForDnetWrite with the following NI-DNET functions:

• ncWriteDnetIO : Convert a LabVIEW data type for placement into the output assembly.

• ncSetDnetAttribute : Convert a LabVIEW data type to set as the attribute value.

• ncWriteDnetExplMsg : Convert a LabVIEW data type for placement into the service
request.

Since DeviceNet data types are very similar to C language data types, C programming does
not need a function like ncConvertForDnetWrite . By using standard C language pointer
manipulations, you can easily convert an appropriate C language data type for writing as a
DeviceNet data member. For more information about converting C language data types, refer
to the Examples at the end of this section.

Parameter Descriptions
DnetData in

Description Initial data bytes to write on the DeviceNet network. These data bytes
are normally created as a constant array of U8 then given valid default
values. If you need to convert multiple DeviceNet data members, you
can wire this input terminal from the DnetData out output terminal
of a previous use of this function.

If you replace all initial data bytes using this function, the default values
are unimportant, and you can leave them as zero.

Values Initial data bytes to write on the DeviceNet network
or
DnetData out output terminal of a previous use of this function

Chapter 2 NI-DNET Functions — ncConvertForDnetWrite (Convert For DeviceNet Write)

© National Instruments Corporation 2-11 NI-DNET Programmer Reference Manual

DnetType

ByteOffset

Description An enumerated list from which you choose the desired DeviceNet data
type to convert into. For each DeviceNet data type, the appropriate
LabVIEW data type is listed in parentheses.

When you select the DeviceNet data type BOOL,
ncConvertForDnetWrite converts the byte indicated by
ByteOffset from an array of eight LabVIEW booleans. You can index
into this array to change specific boolean members. The boolean at
index zero is the least significant bit (bit 0), the boolean at index one is
the next least significant (bit 1), and so on.

Values BOOL (8[TF])

SINT (I8)

INT (I16)

DINT (I32)

USINT (U8)

UINT (U16)

UDINT (U32)

REAL (SGL)

LREAL (DBL)

SHORT_STRING (abc)

STRING (abc)

Description Byte offset of the DeviceNet member to convert into. For the DeviceNet
data member you want to replace, this is the byte offset in

DnetData in where the member begins. Byte offsets start at zero.

You can find information on the format of your DeviceNet data in:

• ncWriteDnetIO : Specification for your device’s output assembly.

• ncSetDnetAttribute : Data type of the attribute. Unless the
attribute’s DeviceNet data type is a structure or array, the value for
ByteOffset is always 0.

• ncWriteDnetExplMsg : Specification for the service data of the
explicit message request.

Values 0 to 255

Chapter 2 NI-DNET Functions — ncConvertForDnetWrite (Convert For DeviceNet Write)

NI-DNET Programmer Reference Manual 2-12 © National Instruments Corporation

8[TF] in

I32/I16/I8 in

U32/U16/U8 in

DBL/SGL in

Description If the selected DnetType is BOOL, this input terminal provides the
LabVIEW data to convert into a DeviceNet data member. The LabVIEW
data type for this input terminal is an array of eight LabVIEW booleans,
indicated as 8[TF] . You can index into this array to change specific
boolean members. The boolean at index zero is the least significant bit
(bit 0), the boolean at index one is the next least significant (bit 1), and
so on.

Values LabVIEW data to convert into a DeviceNet data member

Description If the selected DnetType is SINT, INT , or DINT, this input terminal
provides the LabVIEW data to convert into a DeviceNet data member.
Although the LabVIEW data type for this input terminal is I32 , it can
be coerced automatically from I16 or I8 .

Values LabVIEW data to convert into a DeviceNet data member

Description If the selected DnetType is USINT, UINT, or UDINT, this input terminal
provides the LabVIEW data to convert into a DeviceNet data member.
Although the LabVIEW data type for this input terminal is U32, it can
be coerced automatically from U16 or U8.

Values LabVIEW data to convert into a DeviceNet data member

Description If the selected DnetType is REAL or LREAL, this input terminal provides
the LabVIEW data to convert into a DeviceNet data member. Although
the LabVIEW data type for this input terminal is DBL, it can be coerced
automatically from SGL.

Values LabVIEW data to convert into a DeviceNet data member

Chapter 2 NI-DNET Functions — ncConvertForDnetWrite (Convert For DeviceNet Write)

© National Instruments Corporation 2-13 NI-DNET Programmer Reference Manual

abc in

DnetData out

Return Status
This function does not return status because this function cannot encounter errors.

Examples
1. Using LabVIEW, use ncWriteDnetIO to write Command Assembly 1 to a Position

Controller. In this output assembly, the byte at offset 0 consists of 8 BOOL and the bytes
at offset 4-7 consist of a Target Position of type DINT. Use ncConvertForDnetWrite
to convert appropriate LabVIEW data types for these DeviceNet data members.

Description If the selected DnetType is SHORT_STRING or STRING, this input
terminal provides the LabVIEW data to convert into a DeviceNet data
member. The LabVIEW data type for this input terminal is abc .

Values LabVIEW data to convert into a DeviceNet data member

Description DeviceNet data bytes (with member inserted). These data bytes are
written on the DeviceNet network using the ncWriteDnetIO ,
ncSetDnetAttribute , or ncWriteDnetExplMsg function. If you
need to convert multiple DeviceNet data members, you can also wire
this output terminal into the DnetData in input terminal of a
subsequent use of this function.

Values Data input terminal of the ncWriteDnetIO function
or
AttrData input terminal of the ncSetDnetAttribute function
or
ServData input terminal of the ncWriteDnetExplMsg function
or
DnetData in input terminal of a subsequent use of this function

Chapter 2 NI-DNET Functions — ncConvertForDnetWrite (Convert For DeviceNet Write)

NI-DNET Programmer Reference Manual 2-14 © National Instruments Corporation

2. Using LabVIEW, set an attribute Foo using the ncSetDnetAttribute function. The
attribute Foo is contained in an object with class IDD5 hex, instance ID1, attribute ID5,
and its DeviceNet data type is LREAL. Use ncConvertForDnetWrite to convert the
appropriate LabVIEW data type for Foo.

Chapter 2 NI-DNET Functions — ncConvertForDnetWrite (Convert For DeviceNet Write)

© National Instruments Corporation 2-15 NI-DNET Programmer Reference Manual

3. Using C, demonstrate the same conversions as Example 1.

NCTYPE_UINT8 data[8];

NCTYPE_UINT8 I;

NCTYPE_INT32 TargetPos; /* DINT */

NCTYPE_BOOL Enable; /* BOOL */

NCTYPE_BOOL StartTraj; /* BOOL */

/* Initialize default values of zero. */

for (I = 0; I < 8; I++)

data[I] = 0;

/* If Enable is true, set bit 7 of byte 0. If StartTraj is

true, set bit 0 of byte 0. */

if (Enable == NC_TRUE)

data[0] |= 0x80;

if (StartTraj == NC_TRUE)

data[0] |= 0x01;

/* Take the address of the data byte at offset 4, cast that

address to point to the appropriate C language data type, then

dereference the pointer in order to store the value. */

*(NCTYPE_INT32 *)(&(data[4])) = TargetPos;

status = ncWriteDnetIO(objh, sizeof(data), data);

4. Using C, demonstrate the same conversion as Example 2.

NCTYPE_LREAL foo;

/* Conversion is performed automatically simply by passing in

a pointer to the appropriate C language data type. */

foo = 354654.4543;

status = ncSetDnetAttribute(objh, 0xD5, 0x01, 0x05, 100,
sizeof(foo), &foo);

Chapter 2 NI-DNET Functions — ncConvertFromDnetRead (Convert From DeviceNet Read)

NI-DNET Programmer Reference Manual 2-16 © National Instruments Corporation

ncConvertFromDnetRead (Convert From DeviceNet Read)

Purpose
Convert data read from the DeviceNet network into an appropriate LabVIEW data type.

Format
LabVIEW

C
Not applicable, but see Examples at the end of this section

Input
DnetData in Data bytes read from the DeviceNet network

DnetType DeviceNet data type to convert from

ByteOffset Byte offset of the DeviceNet member to convert

Output
DnetData out DeviceNet data bytes (unchanged)

8[TF] out Converted LabVIEW array of 8 TF

I32/I16/I8 out Converted LabVIEW I32 , I16 , or I8

U32/U16/U8 out Converted LabVIEW U32, U16, or U8

DBL/SGL out Converted LabVIEW DBL or SGL

abc out Converted LabVIEW string

Function Description
Many fundamental differences exist between the encoding of a DeviceNet data type and its
equivalent data type in LabVIEW. For example, for a 32-bit integer, the DeviceNet DINT data
type uses Intel byte ordering (lowest byte first), and the equivalent LabVIEW I32 data type
uses Motorola byte ordering (highest byte first).

This function takes a sequence of bytes read from the DeviceNet network, and given the byte
offset and DeviceNet data type for a specific data member in those bytes, converts that
DeviceNet data member into an appropriate LabVIEW data type.

Chapter 2 NI-DNET Functions — ncConvertFromDnetRead (Convert From DeviceNet Read)

© National Instruments Corporation 2-17 NI-DNET Programmer Reference Manual

You typically use ncConvertFromDnetRead with the following NI-DNET functions:

• ncReadDnetIO : Convert a member of the input assembly to its LabVIEW data type.

• ncGetDnetAttribute : Convert the attribute to its LabVIEW data type.

• ncReadDnetExplMsg : Convert a member in the service response to its LabVIEW
data type.

Since DeviceNet data types are similar to C language data types, C programming does not
need a function like ncConvertFromDnetRead . By using standard C language pointer
manipulations, you can convert a DeviceNet data member into its appropriate C language data
type. For more information about converting DeviceNet data members into C language data
types, refer to the Examples at the end of this section.

Parameter Descriptions
DnetData in

Description Data bytes read from the DeviceNet network. These data bytes are read
from the DeviceNet network using the ncReadDnetIO ,
ncGetDnetAttribute , or ncReadDnetExplMsg function. If you
need to convert multiple DeviceNet data members, you can wire this
input terminal from the DnetData out output terminal of a previous
use of this function.

Values Data output terminal of the ncReadDnetIO function
or
AttrData output terminal of the ncGetDnetAttribute function
or
ServData output terminal of the ncReadDnetExplMsg function
or
DnetData out output terminal of a previous use of this function

Chapter 2 NI-DNET Functions — ncConvertFromDnetRead (Convert From DeviceNet Read)

NI-DNET Programmer Reference Manual 2-18 © National Instruments Corporation

DnetType

ByteOffset

Description An enumerated list from which you select the DeviceNet data type to
convert. For each DeviceNet data type, the list displays the resulting
LabVIEW data type in parentheses.

When you select the DeviceNet data type BOOL,
ncConvertFromDnetRead converts the byte indicated by
ByteOffset into an array of eight LabVIEW booleans. You can index
into this array to use specific boolean members. The boolean at index
zero is the least significant bit (bit 0), the boolean at index one is the next
least significant (bit 1), and so on.

Values BOOL (8[TF])

SINT (I8)

INT (I16)

DINT (I32)

USINT (U8)

UINT (U16)

UDINT (U32)

REAL (SGL)

LREAL (DBL)

SHORT_STRING (abc)

STRING (abc)

Description Byte offset of the DeviceNet member to convert. For the DeviceNet data
member you want to convert, this is the byte offset in DnetData in
where the member begins. Byte offsets start at zero.

You can find information on the format of your DeviceNet data in:

• ncReadDnetIO : Specification for your device’s input assembly.

• ncGetDnetAttribute : Data type of the attribute. Unless the
attribute’s DeviceNet data type is a structure or array, the value for
ByteOffset is always 0.

• ncReadDnetExplMsg : Specification for the service data of the
explicit message response.

Values 0 to 255

Chapter 2 NI-DNET Functions — ncConvertFromDnetRead (Convert From DeviceNet Read)

© National Instruments Corporation 2-19 NI-DNET Programmer Reference Manual

DnetData out

8[TF] out

I32/I16/I8 out

U32/U16/U8 out

Description DeviceNet data bytes (unchanged). The data bytes of DnetData in are
passed through the VI to this output terminal unchanged. In order to
convert another DeviceNet data member, this data can be passed on to
another call to this function.

Values Same as DnetData in

Description If the selected DnetType is BOOL, this output terminal provides the
converted DeviceNet data member. The LabVIEW data type for this
output terminal is an array of eight LabVIEW booleans, indicated as
8[TF] . You can index into this array to use specific boolean members.
The boolean at index zero is the least significant bit (bit 0), the boolean
at index one is the next least significant (bit 1), and so on.

Values Converted DeviceNet data member

Description If the selected DnetType is SINT, INT , or DINT, this output terminal
provides the converted DeviceNet data member. Although the
LabVIEW data type for this output terminal is I32 , it can be coerced
automatically to I16 or I8 .

Values Converted DeviceNet data member

Description If the selected DnetType is USINT, UINT, or UDINT, this output terminal
provides the converted DeviceNet data member. Although the
LabVIEW data type for this output terminal is U32, it can be coerced
automatically to U16 or U8.

Values Converted DeviceNet data member

Chapter 2 NI-DNET Functions — ncConvertFromDnetRead (Convert From DeviceNet Read)

NI-DNET Programmer Reference Manual 2-20 © National Instruments Corporation

DBL/SGL out

abc out

Return Status
This function does not return status because this function cannot encounter errors.

Examples
1. Using LabVIEW, use ncReadDnetIO to read Response Assembly 1 from a Position

Controller. In this input assembly, the byte at offset 0 consists of 8 BOOL, and the bytes at
offset 4-7 consist of an Actual Position of type DINT. Use ncConvertFromDnetRead
to convert these DeviceNet data members into appropriate LabVIEW data types.

Description If the selected DnetType is REAL or LREAL, this output terminal
provides the converted DeviceNet data member. Although the
LabVIEW data type for this output terminal is DBL, it can be coerced
automatically to SGL.

Values Converted DeviceNet data member

Description If the selected DnetType is SHORT_STRING or STRING, this output
terminal provides the converted DeviceNet data member. The LabVIEW
data type for this output terminal is abc .

Values Converted DeviceNet data member

Chapter 2 NI-DNET Functions — ncConvertFromDnetRead (Convert From DeviceNet Read)

© National Instruments Corporation 2-21 NI-DNET Programmer Reference Manual

2. Using LabVIEW, get the Device Type attribute using the ncGetDnetAttribute
function. The Device Type is contained in the Identity Object (class ID 1, instance ID 1,
attribute ID 2), and its DeviceNet data type is UINT. Use ncConvertFromDnetRead to
convert the Device Type into an appropriate LabVIEW data type.

Chapter 2 NI-DNET Functions — ncConvertFromDnetRead (Convert From DeviceNet Read)

NI-DNET Programmer Reference Manual 2-22 © National Instruments Corporation

3. Using C, demonstrate the same conversions as Example 1.

NCTYPE_UINT8 data[8];

NCTYPE_INT32 ActualPos; /* DINT */

NCTYPE_BOOL CurrentDir; /* BOOL */

NCTYPE_BOOL TrajInProg; /* BOOL */

status = ncReadDnetIO(objh, sizeof(data), data);

/* Take the address of the data byte at offset 4, cast that

address to point to the appropriate C language data type, then

dereference the pointer. */

ActualPos = *(NCTYPE_INT32 *)(&(data[4]));

/* If bit 4 of byte 0 is set, then CurrentDir is true. If bit

0 of byte 0 is set, the TrajInProg is true. */

CurrentDir = (data[0] & 0x10) ? NC_TRUE : NC_FALSE;

TrajInProg = (data[0] & 0x01) ? NC_TRUE : NC_FALSE;

4. Using C, demonstrate the same conversion as Example 2.

NCTYPE_UINT16 device_type;

NCTYPE_UINT16 actual_length;
/* Conversion is performed automatically simply by passing in

a pointer to the appropriate C language data type. */

status = ncGetDnetAttribute(objh, 0x01, 0x01, 0x02, 100,
sizeof(device_type), &device_type,
&actual_length);

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

© National Instruments Corporation 2-23 NI-DNET Programmer Reference Manual

ncCreateNotification (Create Notification)

Purpose
Create a notification callback for an object (C only).

Format
LabVIEW
Not applicable; see ncCreateOccurrence (Create Occurrence)

C
NCTYPE_STATUS ncCreateNotification(NCTYPE_OBJH ObjHandle,

NCTYPE_STATE DesiredState,

NCTYPE_DURATION Timeout,

NCTYPE_ANY_P RefData,

NCTYPE_NOTIFY_CALLBACK

Callback)

Input
ObjHandle Object handle of an open Explicit Messaging Object or

I/O Object

DesiredState States for which notification is called

Timeout Number of milliseconds to wait for one of the desired
states

RefData Pointer to user-specified reference data

Callback Address of your callback function

Output
None

Function Description
ncCreateNotification creates a notification callback for the object specified by
ObjHandle . The NI-DNET driver uses the notification callback to communicate state
changes to your application. The ncCreateNotification function does not apply to
LabVIEW programming. Use the ncCreateOccurrence function to receive notifications
within LabVIEW.

You commonly use ncCreateNotification to receive notifications when new input data
is available for an I/O Object. Within your notification callback function, you call

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

NI-DNET Programmer Reference Manual 2-24 © National Instruments Corporation

ncReadDnetIO to read the new input data, perform any needed calculations for that data, call
ncWriteDnetIO to provide output data, then return from the callback function.

You normally use this function when you want to allow other code to execute while waiting
for NI-DNET states, especially when the other code does not call NI-DNET functions. If you
do not need such background execution, the ncWaitForState function offers better overall
performance. You cannot use the ncWaitForState function at the same time as
ncCreateNotification .

When ncCreateNotification returns successfully, NI-DNET calls your notification
callback function whenever one of the states specified by DesiredState occurs in the
object. If DesiredState is 0, NI-DNET disables notifications for the object specified by
ObjHandle .

Parameter Descriptions
ObjHandle

Description This parameter must contain an object handle returned from the
ncOpenDnetExplMsg or ncOpenDnetIO function.

 Values The encoding of ObjHandle is internal to NI-DNET.

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

© National Instruments Corporation 2-25 NI-DNET Programmer Reference Manual

DesiredState

Description States for which notification is called. So that notification can be enabled
for multiple states simultaneously, a single bit represents each state. For
example, if NI-DNET provides states with values of hex 1 and hex 4,
then DesiredState of hex 5 enables notification for both states.

Read Avail for the I/O Object

For the I/O Object, the Read Avail state sets when a new input
message is received from the network. The Read Avail state
clears when you call ncReadDnetIO . For example, for a
Change-of-state (COS) I/O connection, the notification occurs
when a COS input message is received.

The typical behavior for your callback function is to call
ncReadDnetIO to read the new input data, perform any
calculations needed, call ncWriteDnetIO to provide output data,
then return from the callback function.

Read Avail for the Explicit Messaging Object

For the Explicit Messaging Object, the Read Avail state sets
when an explicit message response is received from the network.
The Read Avail state clears when you call
ncReadDnetExplMsg . An explicit message response is received
only after you send an explicit message request using
ncWriteDnetExplMsg .

Although using a notification for an explicit message response
allows for execution of other code while waiting, it is often more
straightforward to use the following sequence of calls:
ncWriteDnetExplMsg , ncWaitForState ,
ncReadDnetExplMsg . This is the sequence used internally by the
ncGetDnetAttribute and ncSetDnetAttribute functions.

The Read Avail state is not needed when using the explicit
messaging functions ncGetDnetAttribute and
ncSetDnetAttribute because both of these functions wait for
the explicit message response internally.

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

NI-DNET Programmer Reference Manual 2-26 © National Instruments Corporation

Description
(Continued)

Established for the Explicit Messaging Object

For the Explicit Messaging Object, the Established state is clear
(not established) before you start communication using
ncOperateDnetIntf . Once you start communication, the
Established state remains clear until the explicit message
connection has been successfully established with the remote
DeviceNet device. Once the explicit message connection has been
established, the Established state sets and remains set for as long
as the explicit message connection is open.

Until the Established state is set for the Explicit Messaging
Object, all calls to ncGetDnetAttribute ,
ncSetDnetAttribute , or ncWriteDnetExplMsg return the
error NC_ERR_NOT_STARTED. Before you call any of these
functions in your application, you must first wait for the
Established state to set.

Once the Established state is set, unless communication
problems occur with the device (NC_ERR_TIMEOUT), it remains set
until you stop communication using ncOperateDnetIntf .

Error for the I/O Object or Explicit Messaging Object

The Error state is set whenever a communication error occurs
while attempting to communicate with the remote DeviceNet
device. These communication errors are generally equivalent to the
errors returned from read/write functions like ncReadDnetIO and
ncWriteDnetIO . The Error state is cleared only after NI-DNET
is able to communicate successfully with the device.

The Error state is typically used in combination with either the

Read Avail or the Established state. While waiting for one of
these states, waiting for the Error state ensures that if a
communication error occurs, the wait returns immediately with the
appropriate error code.

For example, consider an explicit message connection that
NI-DNET cannot initialize properly. If you call
ncCreateNotification with DesiredState of Established
and a Timeout of 10000 , after 10 seconds the notification is called
with Status of NC_ERR_TIMEOUT. If you call
ncCreateNotification with DesiredState of Established
OR Error , and a Timeout of 10000 , the notification is
immediately called with a Status of NC_ERR_DEVICE_INIT that
indicates the specific problem encountered.

DesiredState (Continued)

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

© National Instruments Corporation 2-27 NI-DNET Programmer Reference Manual

Timeout

RefData

 Values A combination of the following bit values:

1 hex (Read Avail state, constant NC_ST_READ_AVAIL)

8 hex (Established , constant NC_ST_ESTABLISHED)

10 hex (Error , constant NC_ST_ERROR)

In the LabWindows/CVI function panel, to facilitate combining
multiple states, you can select a combination from an enumerated list of
all valid combinations. This list contains the names of each state in the
combination, such as Read Avail OR Error .

Description Number of milliseconds to wait for one of the desired states. If the
timeout expires before one of the desired states occurs, your notification
function is called with CurrentState of 0 and Status of
NC_ERR_TIMEOUT.

Use the special timeout value of FFFFFFFF hex to wait indefinitely.

Values 1 to 200000

or
FFFFFFFF hex (infinite duration, constant NC_DURATION_INFINITE)

Description This parameter provides a pointer that is passed to all calls of your
notification callback function. It is typically used to provide the address
of globally declared reference data for use within the notification
callback. For example, for the Read Avail state, RefData is often the
data buffer which you pass to ncReadDnetIO to read available data. If
the notification callback does not need reference data, you can set
RefData to NULL.

Values Pointer to any globally declared data variable
or
NULL

DesiredState (Continued)

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

NI-DNET Programmer Reference Manual 2-28 © National Instruments Corporation

Callback

Description This is the address of a callback function within your application source
code. Within the code for the callback function, you can call any of the
NI-DNET functions except for ncCreateNotification and
ncWaitForState .

Declare this function using the following C language prototype:

NCTYPE_STATE _NCFUNC_ Callback(

NCTYPE_OBJH ObjHandle,

NCTYPE_STATE CurrentState,

NCTYPE_STATUS Status,

NCTYPE_ANY_P RefData);

In the declaration for your callback, the constant _NCFUNC_ is required
for your compiler to declare the function such that it can be called by the
NI-DNET device driver.

Parameter Descriptions for Callback

ObjHandle

Object handle originally passed to ncCreateNotification . This
identifies the object generating the notification, which is useful
when you use the same callback function for multiple objects.

CurrentState

Current state of the object. If one of the desired states occurs, it
provides the current value of the Read Avail , Established , and
Error states. If the Timeout expires before one of the desired
states occurs, it has the value 0.

Status

Current status of the object. If one of the desired states occurs, it has
the value 0 (NC_SUCCESS). If the Timeout expires before one of
the desired states occurs, it has the value 80000001 hex
(NC_ERR_TIMEOUT with an error qualifier of
NC_QUAL_TIMO_FUNCTION). If the Error state is indicated in
CurrentState , it has a value similar to the errors returned by
ncWaitForState .

RefData

Pointer to your reference data as originally passed to
ncCreateNotification .

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

© National Instruments Corporation 2-29 NI-DNET Programmer Reference Manual

Description
(Continued)

Return Value from Callback

The value you return from the callback indicates the desired states
to re-enable for notification. If you want to continue to receive
notifications, return the same value as the original DesiredState
parameter. If you no longer want to receive notifications, return a
value of 0.

If you return a nonzero value from the callback, and one of those
states is still set, the callback is invoked again immediately after you
return. For example, if you return Read Avail from the callback
without calling ncReadDnetIO to read the available data, the
callback is invoked again.

Information Specific to LabWindows/CVI

When the NI-DNET device driver calls your notification callback,
it does so in a separate thread within the LabWindows/CVI process.
Your application’s front panel indicators and controls can only be
accessed within the main thread of the LabWindows/CVI process.
Although you can call NI-DNET functions and perform generic C
calculations in your notification callback, you cannot call
LabWindows/CVI functions which access the front panel (the User
Interface Library). To use the LabWindows/CVI User Interface
Library, save any data needed for front panel indicators using global
variables, then register a deferred callback using the
LabWindows/CVI PostDeferredCall function. Since a
LabWindows/CVI deferred callback executes in the main thread of
the LabWindows/CVI process, you can call any LabWindows/CVI
function, including the User Interface Library.

Information Specific to Microsoft, Borland, and Other C Compilers

When the NI-DNET device driver calls your notification callback,
it does so in a separate thread within your process. Therefore, it has
access to any process global data, but not thread local data. If your
callback function needs to access global variables, you must protect
that access using synchronization primitives (such as semaphores)
because your callback is running in a different thread context. For
an explanation of these concepts and other multithreading issues,
refer to the online help of the Microsoft Win32 Software
Development Kit (SDK).

Callback (Continued)

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

NI-DNET Programmer Reference Manual 2-30 © National Instruments Corporation

Return Status
For information about converting the return status into a descriptive string, refer to
Appendix A, Status Handling and Error Codes.

NC_SUCCESS Success (no warning or error)

NC_ERR_BAD_PARAM Invalid parameter

NC_ERR_DRIVER Implementation-specific error in the NI-DNET driver

NC_ERR_NOT_SUPPORTED Only one pending wait or notification is allowed at any
given time.

 Example
Create a notification for the Read Avail state. Use a timeout of 10 s.

NCTYPE_UINT8 DataBuffer[20];

NCTYPE_STATE _NCFUNC_ MyReadCallback (

NCTYPE_OBJH ObjHandle,

NCTYPE_STATE CurrentState,

NCTYPE_STATUS Status,

NCTYPE_ANY_P RefData) {

if (Status == NC_SUCCESS) {

Status = ncReadDnetIO(ObjHandle, 20, RefData);

.

.

.

}

.

.

.

return(NC_ST_READ_AVAIL);

}

Values Address of a callback function within your application source code.

For example, if your function is declared with the name
MyReadCallback , you would pass MyReadCallback as the
Callback parameter.

Callback (Continued)

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

© National Instruments Corporation 2-31 NI-DNET Programmer Reference Manual

void main() {

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

.

.

.

status = ncCreateNotification(objh, NC_ST_READ_AVAIL,

10000, DataBuffer, MyReadCallback);

.

.

.

}

Chapter 2 NI-DNET Functions — ncCreateOccurrence (Create Occurrence)

NI-DNET Programmer Reference Manual 2-32 © National Instruments Corporation

ncCreateOccurrence (Create Occurrence)

Purpose
Create a notification occurrence for an object (LabVIEW only).

Format
LabVIEW

C
Not applicable; see ncCreateNotification (Create Notification)

Input
ObjHandle Object handle of an open Explicit Messaging Object or

I/O Object

DesiredState States for which notification occurs

Output
Occurrence Occurrence that can be used with LabVIEW Wait on

Occurrence VI.

Function Description
ncCreateOccurrence creates a notification occurrence for the object specified by
ObjHandle . The NI-DNET driver uses the occurrence to communicate state changes to your
application. The ncCreateOccurrence function is not applicable to C programming. Use
the ncCreateNotification function to receive notifications within C.

The most common use of this function is to receive an occurrence when new input data is
available for an I/O Object. When the occurrence is received, you call ncReadDnetIO to read
the new input data, perform any calculations needed, call ncWriteDnetIO to provide output
data, then wait for the occurrence again. By using the occurrence with I/O Objects, your
application executes at the same rate as the DeviceNet I/O communication.

When ncCreateOccurrence returns successfully, the notification occurrence is
set whenever one of the states specified by DesiredState occurs in the object. If
DesiredState is 0, notifications are disabled for the object specified by ObjHandle .

Chapter 2 NI-DNET Functions — ncCreateOccurrence (Create Occurrence)

© National Instruments Corporation 2-33 NI-DNET Programmer Reference Manual

Parameter Descriptions
ObjHandle

Description This parameter must contain an object handle returned from the
ncOpenDnetExplMsg or ncOpenDnetIO function.

In LabVIEW, this parameter is passed through the VI as an output so that
it can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

DesiredState

Description States for which notification occurs. Each state is represented by a single
bit so that you can enable notification for multiple states simultaneously.
For example, if NI-DNET provides states with values of hex 1 and hex 4,
then DesiredState of hex 5 enables notification for both states.

Read Avail for the I/O Object

For the I/O Object, the Read Avail state is set when a new input
message is received from the network. The Read Avail state is
cleared when you call ncReadDnetIO . For example, for a
change-of-state (COS) I/O connection, the notification occurs when
a COS input message is received.

When the occurrence is received, the typical behavior is to call
ncReadDnetIO to read the new input data, perform any
calculations needed, call ncWriteDnetIO to provide output data,
then wait for the occurrence again.

Chapter 2 NI-DNET Functions — ncCreateOccurrence (Create Occurrence)

NI-DNET Programmer Reference Manual 2-34 © National Instruments Corporation

Description
(Continued)

Read Avail for the Explicit Messaging Object

For the Explicit Messaging Object, the Read Avail state is set
when an explicit message response is received from the network.
The Read Avail state is cleared when you call
ncReadDnetExplMsg . An explicit message response is received
only after you send an explicit message request using
ncWriteDnetExplMsg .

Although using a notification for an explicit message response
allows for execution of other code while waiting, it is often more
straightforward to use the following sequence of calls:
ncWriteDnetExplMsg , ncWaitForState ,
ncReadDnetExplMsg . This is the sequence used internally by the
ncGetDnetAttribute and ncSetDnetAttribute functions.

The Read Avail state is not needed when using the explicit
messaging functions ncGetDnetAttribute and
ncSetDnetAttribute because both of these functions wait for
the explicit message response internally.

Established for the Explicit Messaging Object

For the Explicit Messaging Object, the Established state is clear
(not established) before you start communication using
ncOperateDnetIntf . Once you start communication, the
Established state remains clear until the explicit message
connection has been successfully established with the remote
DeviceNet device. Once the explicit message connection has been
established, the Established state sets and remains set for as long
as the explicit message connection is open.

Until the Established state is set for the Explicit Messaging
Object, all calls to ncGetDnetAttribute ,
ncSetDnetAttribute , or ncWriteDnetExplMsg return the
error NC_ERR_NOT_STARTED. Before you call any of these
functions in your application, you must first wait for the
Established state to set.

Once the Established state is set, unless communication
problems occur with the device (NC_ERR_TIMEOUT), it remains set
until you stop communication using ncOperateDnetIntf .

DesiredState (Continued)

Chapter 2 NI-DNET Functions — ncCreateOccurrence (Create Occurrence)

© National Instruments Corporation 2-35 NI-DNET Programmer Reference Manual

Description
(Continued)

Error for the I/O Object or Explicit Messaging Object

The Error state is set whenever a communication error occurs
while attempting to communicate with the remote DeviceNet
device. These communication errors are generally equivalent to the
errors returned from read/write functions like ncReadDnetIO and
ncWriteDnetIO . The Error state is cleared only after NI-DNET
is able to communicate successfully with the device.

The Error state is typically used in combination with either the

Read Avail or the Established state. While waiting for one of
these states, waiting for the Error state ensures that if a
communication error occurs, the wait returns immediately with the
appropriate error code.

For example, consider an explicit message connection that
NI-DNET cannot initialize properly. If you call
ncCreateNotification with DesiredState of Established
and a Timeout of 10000 , after 10 s the notification is called with
Status of NC_ERR_TIMEOUT. If you call
ncCreateNotification with DesiredState of Established
or Error , and a Timeout of 10000 , the notification is immediately
called with a Status of NC_ERR_DEVICE_INIT that indicates the
specific problem encountered.

Values A combination of the following bit values:

1 hex (Read Avail state, constant NC_ST_READ_AVAIL)

8 hex (Established , constant NC_ST_ESTABLISHED)

10 hex (Error , constant NC_ST_ERROR)

To facilitate combining multiple states, you can select a combination
from an enumerated list of all valid combinations. This list contains the
names of each state in the combination, such as Read Avail OR
Error .

DesiredState (Continued)

Chapter 2 NI-DNET Functions — ncCreateOccurrence (Create Occurrence)

NI-DNET Programmer Reference Manual 2-36 © National Instruments Corporation

Occurrence

Return Status
For information about converting the return status into a descriptive string, refer to
Appendix A, Status Handling and Error Codes.

NC_SUCCESS Success (no warning or error)

NC_ERR_BAD_PARAM Invalid parameter

NC_ERR_DRIVER Implementation-specific error in the NI-DNET driver

NC_ERR_NOT_SUPPORTED Only one pending wait or notification is allowed at any
given time.

 Example
Using LabVIEW, create an occurrence for the Read Avail state.

Description This output is wired into the LabVIEW Wait on Occurrence VI. The

Wait on Occurrence VI takes the Occurrence , a timeout in
milliseconds, and a flag indicating whether to ignore a pending state. For
more information on Wait on Occurrence , refer to the LabVIEW
Online Reference.

After the occurrence is created successfully, it sets each time one of the
desired states goes from false to true. When you no longer want to wait
on the occurrence (such as when terminating your application), call
ncCreateOccurrence with DesiredState zero (constant Clear

Occurrence).

Values The encoding of Occurrence is internal to LabVIEW.

Chapter 2 NI-DNET Functions — ncGetDnetAttribute (Get DeviceNet Attribute)

© National Instruments Corporation 2-37 NI-DNET Programmer Reference Manual

ncGetDnetAttribute (Get DeviceNet Attribute)

Purpose
Get an attribute value from a DeviceNet device using an Explicit Messaging Object.

Format
LabVIEW

C
NCTYPE_STATUS ncGetDnetAttribute(

NCTYPE_OBJH ObjHandle,

NCTYPE_UINT16 ClassId,

NCTYPE_UINT16 InstanceId,

NCTYPE_UINT8 AttributeId,

NCTYPE_DURATION Timeout,

NCTYPE_UINT16 SizeofAttrData,

NCTYPE_ANY_P AttrData,

NCTYPE_UINT16_P ActualAttrDataLength

NCTYPE_UINT16_P DeviceError);

Input
ObjHandle Object handle of an open Explicit Messaging Object

ClassId Identifies the class which contains the attribute

InstanceId Identifies the instance which contains the attribute

AttributeId Identifies the attribute to get

Timeout Maximum time to wait for response from device

SizeofAttrData Size of AttrData buffer in bytes (C only)

Chapter 2 NI-DNET Functions — ncGetDnetAttribute (Get DeviceNet Attribute)

NI-DNET Programmer Reference Manual 2-38 © National Instruments Corporation

Output
AttrData Attribute value received from device

ActualAttrDataLength Actual number of attribute data bytes returned

DeviceError Error codes from device’s error response

Function Description
This function gets the value of an attribute from a DeviceNet device using an Explicit
Messaging Object.

This function executes the Get Attribute Single service on a remote DeviceNet device.

The format of the data returned in AttrData is defined by the DeviceNet data type in the
attribute’s description. When using LabVIEW, the ncConvertFromDnetRead function can
convert this DeviceNet data type into an appropriate LabVIEW data type. When using C,
AttrData can simply point to a variable of the appropriate data type as specified in
Chapter 1, NI-DNET Data Types.

Parameter Descriptions
ObjHandle

ClassId

Description This parameter must contain an object handle returned from the
ncOpenDnetExplMsg function.

In LabVIEW, this parameter is passed through the VI as an output so that
it can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

Description Identifies the class which contains the attribute. For descriptions and
identifiers for each standard DeviceNet class, see the DeviceNet
Specification (Volume 2, Chapter 6, The DeviceNet Object Library).
Vendor-specific classes are documented by the device vendor. Although
the DeviceNet Specification allows 16-bit class IDs, most class IDs are
8-bit. NI-DNET automatically uses the class ID size (16-bit or 8-bit) that
is appropriate for your device.

Values 00 to FFFF hex

Chapter 2 NI-DNET Functions — ncGetDnetAttribute (Get DeviceNet Attribute)

© National Instruments Corporation 2-39 NI-DNET Programmer Reference Manual

InstanceId

AttributeId

Timeout

Description Identifies the instance which contains the attribute. Instance ID 0 is used
to get an attribute from the class itself. Other instance IDs typically are
numbered starting at 1. For example, the primary Identity Object in a
device uses instance ID1. Although the DeviceNet Specification allows
16-bit instance IDs, most instance IDs are 8-bit. NI-DNET
automatically uses the instance ID size (16-bit or 8-bit) that is
appropriate for your device.

Values 00 to FFFF hex

Description Identifies the attribute to get. Attribute IDs are listed in the class and
instance descriptions in the DeviceNet Specification. The attribute’s
description also lists the DeviceNet data type for the attribute’s value.

Values 00 to FF hex

Description Maximum time to wait for response from device. To get the attribute
from the device, an explicit message request for the Get Attribute Single
service is sent to the device. After sending the service request, this
function must wait for the explicit message response for Get Attribute
Single. This parameter specifies the maximum number of milliseconds
to wait for the response before giving up. If the timeout expires before
the response is received, this function returns a status of 80000001 hex
(NC_ERR_TIMEOUT with an error qualifier of
NC_QUAL_TIMO_FUNCTION).

For most DeviceNet devices, a Timeout of 100 ms is appropriate.

The special timeout value of FFFFFFFF hex is used to wait indefinitely.

Values 1 to 1000

or
FFFFFFFF hex (infinite duration, constant NC_DURATION_INFINITE)

Chapter 2 NI-DNET Functions — ncGetDnetAttribute (Get DeviceNet Attribute)

NI-DNET Programmer Reference Manual 2-40 © National Instruments Corporation

SizeofAttrData

AttrData

ActualAttrDataLength

Description For C, this is the size of the buffer referenced by AttrData . It is used to
verify that you have enough bytes available to store the attribute data.
This size is normally obtained using the C language sizeof function
and has no direct relation to the number of bytes received on the
network.

For LabVIEW, since the buffer for AttrData is allocated automatically
by NI-DNET, this size is not needed.

The number of bytes allocated for AttrData should be large enough to
hold the maximum number of data bytes defined for the attribute.

Values sizeof (buffer referenced by AttrData)

Description Attribute value received from device.

The format of the data returned in AttrData is defined by the
DeviceNet data type in the attribute’s description. When using
LabVIEW, the ncConvertFromDnetRead function can convert this
DeviceNet data type into an appropriate LabVIEW data type. When
using C, AttrData can simply point to a variable of the appropriate data
type as specified in Chapter 1, NI-DNET Data Types.

The number of attribute data bytes returned is the smaller of
SizeofAttrData and ActualAttrDataLength .

Values Attribute data bytes

Description Actual number of attribute data bytes returned. This length is obtained
from the actual Get Attribute Single response message. If this length is
greater than SizeofAttrData , then only SizeofAttrData bytes are
returned in AttrData . If this length is less than or equal to
SizeofAttrData , then ActualAttrDataLength bytes are valid in
AttrData .

Values 0 to 100

Chapter 2 NI-DNET Functions — ncGetDnetAttribute (Get DeviceNet Attribute)

© National Instruments Corporation 2-41 NI-DNET Programmer Reference Manual

DeviceError

Return Status
For information about converting the return status into a descriptive string, refer to
Appendix A, Status Handling and Error Codes.

NC_SUCCESS Success (no warning or error)

NC_ERR_BAD_PARAM Invalid parameter

NC_ERR_TIMEOUT Timeout expired before response received from device

NC_ERR_DRIVER Implementation-specific error in the NI-DNET driver

NC_ERR_RSRC_LIMITS Response received with more than 100 attribute data
bytes

NC_ERR_NOT_STARTED Call made prior to starting communication

NC_ERR_CAN_COMM Low-level communication errors, often caused by bad
cabling

NC_ERR_BAD_NET_ID Interface Object’s MAC ID conflicts with another
DeviceNet device.

Description Error codes from device’s error response.

If the remote device responds successfully to the Get Attribute Single
service, the return status is NC_SUCCESS, and DeviceError returns 0.

If the remote device returns an error response for the Get Attribute
Single service, the return status is NC_ERR_DNET_ERR_RESP, and
DeviceError returns the error codes from the response.

The General Error Code from the device’s error response is returned in
the low byte of DeviceError . Common values for General Error Code
include Attribute Not Supported (14 hex), Object Does Not Exist
(16 hex), and Invalid Attribute Value (09 hex).

The Additional Code from the device’s error response is returned in the
high byte of DeviceError . The Additional Code provides additional
information that further describes the error. If no additional information
is needed, then the value FF hex is placed into this field.

Values for the General Error Code and Additional Code are documented
in the DeviceNet Specification. Common error code values are found in
Appendix H, DeviceNet Error Codes, in the DeviceNet Specification.
Object-specific error codes are listed in the object description.
Vendor-specific error codes are listed in your device’s documentation.

Values Error codes from the device’s error response.

Chapter 2 NI-DNET Functions — ncGetDnetAttribute (Get DeviceNet Attribute)

NI-DNET Programmer Reference Manual 2-42 © National Instruments Corporation

NC_ERR_DNET_ERR_RESP Error response received from remote DeviceNet device
(see Device Error)

NC_ERR_DEVICE_INIT Problem initializing remote device for communication

NC_ERR_DEVICE_MISSING Remote device is missing from network

NC_ERR_FRAGMENTATION Fragment received out of sequence

Examples
• Using LabVIEW, get the Serial Number attribute using an Explicit Messaging Object.

The Serial Number is contained in the Identity Object (class ID1, instance ID1, attribute
ID 6). The DeviceNet data type for Device Type is UDINT, for which the LabVIEW data
type U32 should be used. The Timeout is 100 ms.

• Using C, get the Device Type attribute using the Explicit Messaging Object referenced
by objh . The Device Type is contained in the Identity Object (class ID 1, instance ID1,
attribute ID2). The DeviceNet data type for Device Type is UINT, for which the
NI-DNET data type NCTYPE_UINT16 should be used.

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_UINT16 device_type;

NCTYPE_UINT16 actual_length;

status = ncGetDnetAttribute(objh, 0x01, 0x01, 0x02, 100,
sizeof(device_type), &device_type,
&actual_length);

Chapter 2 NI-DNET Functions — ncGetDriverAttr (Get Driver Attribute)

© National Instruments Corporation 2-43 NI-DNET Programmer Reference Manual

ncGetDriverAttr (Get Driver Attribute)

Purpose
Get the value of an attribute in the NI-DNET driver.

Format
LabVIEW

C
NCTYPE_STATUS ncGetDriverAttr (NCTYPE_OBJH ObjHandle,

NCTYPE_ATTRID AttrId,

NCTYPE_UINT32 SizeofAttr,

NCTYPE_ANY_P Attr)

Input
ObjHandle Object handle of an open Explicit Messaging Object,

I/O Object, or Interface Object

AttrId Identifier of the attribute to get

SizeofAttr Size of the Attr buffer in bytes (C only)

Output
Attr Returned attribute value

Function Description
This function gets the value of an attribute in the NI-DNET driver software. Within NI-DNET
objects, attributes are used to represent configuration settings, status, and other information.

Since you only need to access NI-DNET driver attributes under special circumstances, this
function is seldom used. For information about the attributes of each NI-DNET object, refer
to Chapter 3, NI-DNET Objects.

This function only applies to the NI-DNET software on your computer and cannot be used to
get an attribute from a remote DeviceNet device. To get an attribute from a remote DeviceNet
device, use the ncGetDnetAttribute function.

Chapter 2 NI-DNET Functions — ncGetDriverAttr (Get Driver Attribute)

NI-DNET Programmer Reference Manual 2-44 © National Instruments Corporation

 Parameter Descriptions
ObjHandle

AttrId

SizeofAttr

Attr

Description This parameter must contain an object handle returned from the
ncOpenDnetExplMsg , ncOpenDnetIntf , or ncOpenDnetIO
function.

In LabVIEW, this parameter is passed through the VI as an output so that
it can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

Description Identifier of the NI-DNET attribute. For each NI-DNET object, a list of
supported attribute identifiers is provided in Chapter 3, NI-DNET
Objects.

Values 80000000 to 8000FFFF hex (high bit differentiates from
DeviceNet IDs)

Description For C, this is the size of the buffer referenced by Attr . It is used to verify
that you have enough bytes available to store the attribute’s value. This
size is normally obtained using the C language sizeof function.

For LabVIEW, since the buffer for Attr is allocated automatically by
NI-DNET, this size is not needed.

Values sizeof (buffer referenced by Attr)

Description Returned attribute value. The value is usually returned in an unsigned
32-bit integer (and thus Attr is of type NCTYPE_UINT32_P).

Values Value of NI-DNET attribute

Chapter 2 NI-DNET Functions — ncGetDriverAttr (Get Driver Attribute)

© National Instruments Corporation 2-45 NI-DNET Programmer Reference Manual

Return Status
For information about converting the return status into a descriptive string, refer to
Appendix A, Status Handling and Error Codes.

NC_SUCCESS Success (no warning or error)

NC_ERR_BAD_PARAM Invalid parameter

NC_ERR_DRIVER Implementation-specific error in the NI-DNET driver

NC_ERR_NOT_SUPPORTED Driver attribute not supported for this NI-DNET object

Examples
• Using LabVIEW, get the DeviceNet protocol version supported by NI-DNET.

• Using C, get the version of the NI-DNET software using the Interface Object referenced
by objh .

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_VERSION swver;

status = ncGetDriverAttr(objh, NC_ATTR_SOFTWARE_VERSION,
sizeof(swver), &swver);

Chapter 2 NI-DNET Functions — ncOpenDnetExplMsg (Open DeviceNet Explicit Messaging)

NI-DNET Programmer Reference Manual 2-46 © National Instruments Corporation

ncOpenDnetExplMsg (Open DeviceNet Explicit Messaging)

Purpose
Configure and open an NI-DNET Explicit Messaging Object.

Format
LabVIEW

C
NCTYPE_STATUS ncOpenDnetExplMsg(NCTYPE_STRING IntfName,

NCTYPE_UINT32 DeviceMacId,

NCTYPE_OBJH_P ObjHandle);

Input
IntfName Name of DeviceNet interface

DeviceMacId MAC ID of the remote device

Output
ObjHandle Object handle you use with all subsequent function calls

for the Explicit Messaging Object

Function Description
ncOpenDnetExplMsg configures and opens an NI-DNET Explicit Messaging Object and
returns a handle that you use with all subsequent function calls for that object.

The Explicit Messaging Object represents an explicit messaging connection to a remote
DeviceNet device (physical device attached to your interface by a DeviceNet cable). Since
only one explicit messaging connection is created for a given device, the Explicit Messaging
Object is also used for features which apply to the device as a whole.

The Explicit Messaging Object is used to:

• Execute the DeviceNet Get Attribute Single service on the remote device
(ncGetDnetAttribute).

• Execute the DeviceNet Set Attribute Single service on the remote device
(ncSetDnetAttribute).

Chapter 2 NI-DNET Functions — ncOpenDnetExplMsg (Open DeviceNet Explicit Messaging)

© National Instruments Corporation 2-47 NI-DNET Programmer Reference Manual

• Send any other explicit message request to the remote device and receive the associated
explicit message response (ncWriteDnetExplMsg , ncReadDnetExplMsg).

• Configure NI-DNET settings that apply to the entire remote device.

Parameter Descriptions
IntfName

DeviceMacId

Description Name of the DeviceNet interface as an ASCII string with format
"DNETx", where x is a decimal number starting at zero that
indicates which DeviceNet interface is being used. You use the
NI-DNET Hardware Configuration utility to associate DeviceNet
interface names with physical DeviceNet ports (by
double-clicking on a port’s name). If you only have one
DeviceNet board in your computer, this name is usually DNET0.
For more information about the Hardware Configuration utility,
refer to Chapter 3, Verify the Installation, in your getting started
manual.

Values "DNET0", "DNET1", …"DNET63"

In LabVIEW, the interface name is selected from an enumerated
list. The LabWindows/CVI function panel also provides an
enumerated list.

Description MAC ID (device address) of the remote DeviceNet device.

Many devices use physical switches to set their MAC ID. For such
devices, you can usually determine the device’s MAC ID by
examining those switches. MAC ID 63 is usually reserved for new
devices (many devices use 63 as the factory default).

If you do not know the MAC ID of your DeviceNet device,
NI-DNET provides a utility which can display the MAC ID for
you. This utility is called SimpleWho and is described in the
NI-DNET User Manual.

Values 0 to 63

Chapter 2 NI-DNET Functions — ncOpenDnetExplMsg (Open DeviceNet Explicit Messaging)

NI-DNET Programmer Reference Manual 2-48 © National Instruments Corporation

ObjHandle

Return Status
For information about converting the return status into a descriptive string, refer to
Appendix A, Status Handling and Error Codes.

NC_SUCCESS Success (no warning or error)

NC_ERR_BAD_PARAM Invalid parameter

NC_ERR_NOT_STOPPED Objects cannot be opened while communicating

NC_ERR_DRIVER Implementation-specific error in the NI-DNET driver

Examples
• Using LabVIEW, open an Explicit Messaging Object using interface "DNET2" and

device MAC ID 15.

• Using C, open an Explicit Messaging Object using interface "DNET0" and device MAC
ID 12.

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

status = ncOpenDnetExplMsg("DNET0", 12, &objh);

Description If the ncOpenDnetExplMsg function is successful, a handle to
the newly opened Explicit Messaging Object is returned in
ObjHandle . This handle is used with all subsequent function
calls for that Explicit Messaging Object.

The functions most commonly used with the Explicit Messaging
Object are ncGetDnetAttribute and ncSetDnetAttribute .

Values The encoding of ObjHandle is internal to NI-DNET.

Chapter 2 NI-DNET Functions — ncOpenDnetIntf (Open DeviceNet Interface)

© National Instruments Corporation 2-49 NI-DNET Programmer Reference Manual

ncOpenDnetIntf (Open DeviceNet Interface)

Purpose
Configure and open an NI-DNET Interface Object.

Format
LabVIEW

C
NCTYPE_STATUS ncOpenDnetIntf(NCTYPE_STRING IntfName,

NCTYPE_UINT32 IntfMacId,

NCTYPE_UINT32 BaudRate,

NCTYPE_UINT32 PollMode,

NCTYPE_OBJH_P ObjHandle);

Input
IntfName Name of DeviceNet interface

IntfMacId MAC ID of the DeviceNet interface

BaudRate Baud rate

PollMode Communication scheme for all polled I/O connections

Output
ObjHandle Object handle you use with all subsequent function calls

for the Interface Object

Function Description
ncOpenDnetIntf configures and opens an NI-DNET Interface Object and returns a handle
that you use with all subsequent function calls for that object.

The Interface Object represents a DeviceNet interface (physical DeviceNet port on an
AT-CAN, PCI-CAN, PCMCIA-CAN, or PXI-8461). Since this interface acts as a device on
the DeviceNet network much like any other device, it is configured with its own MAC ID and
baud rate.

Chapter 2 NI-DNET Functions — ncOpenDnetIntf (Open DeviceNet Interface)

NI-DNET Programmer Reference Manual 2-50 © National Instruments Corporation

The Interface Object is used to:

• Configure NI-DNET settings which apply to the entire interface.

• Start and stop communication for all NI-DNET objects associated with the interface.

The Interface Object must be the first NI-DNET object opened by your application, and thus
the ncOpenDnetIntf function must be the first NI-DNET function called by your
application.

Parameter Descriptions
IntfName

IntfMacId

Description Name of the DeviceNet interface as an ASCII string with format
“DNETx ,” where x is a decimal number starting at zero that
indicates which DeviceNet interface is being used. You use the
NI-DNET Hardware Configuration utility to associate
DeviceNet interface names with physical DeviceNet ports (by
double-clicking on a port’s name). If you only have one
DeviceNet board in your computer, this name is usually DNET0.
For more information on the Hardware Configuration utility,
refer to Chapter 3, Verify the Installation, in your getting started
manual.

Values "DNET0" , " DNET1", …"DNET63"

In LabVIEW, the interface name is selected from an enumerated
list. The LabWindows/CVI function panel also provides an
enumerated list.

Description MAC ID (device address) of the DeviceNet interface. This is the
MAC ID used by your DeviceNet board for communication with
other DeviceNet devices.

A device’s MAC ID indicates the priority of its DeviceNet
messages on the network, with lower numbered MAC IDs
having higher priority. If your DeviceNet interface is the only
master in the network (the usual case), this MAC ID is often set
to 0.

Values 0 to 63

Chapter 2 NI-DNET Functions — ncOpenDnetIntf (Open DeviceNet Interface)

© National Instruments Corporation 2-51 NI-DNET Programmer Reference Manual

BaudRate

Description Baud rate used for communication on the network connected to
the DeviceNet interface. The DeviceNet protocol supports baud
rates of 125,000, 250,000, and 500,000 b/s.

Values 125000 , 250000 , or 500000

In LabVIEW, the baud rate is selected from an enumerated list.
The LabWindows/CVI function panel also provides an
enumerated list.

PollMode

Description Determines the communication scheme used for all polled
I/O connections in which the interface acts as a master. The poll
mode determines the overall scheme used to transmit poll
requests to slave devices.

Automatic

The default poll mode is Automatic . This mode is used if
you do not want to specify exact timing for polled and
strobed I/O connections. In Automatic mode, the
NI-DNET software automatically calculates a safe rate for
production of all poll requests and strobe requests. This
mode is similar to Scanned mode, except that you do not
need to specify a valid ExpPacketRate for each
polled/strobed I/O Object (ExpPacketRate is ignored).

Chapter 2 NI-DNET Functions — ncOpenDnetIntf (Open DeviceNet Interface)

NI-DNET Programmer Reference Manual 2-52 © National Instruments Corporation

Description
(Continued)

Scanned

This mode enables the traditional scanned I/O scheme for
polled and strobed I/O connections. In Scanned mode, all
poll requests and strobe requests are produced in quick
succession, then NI-DNET waits to receive individual
responses. The benefits of scanned I/O are reduced
overhead and improved overall determinism on the
DeviceNet network.

When using Scanned mode, since all poll and strobe
requests are produced at the same time, you normally set the
ExpPacketRate for all polled and strobed I/O Objects to a
common value.

If you need to isolate devices that are slow to respond to poll
requests, it is possible to use different ExpPacketRate
values while still maintaining the benefits of scanned I/O.
You can set all ExpPacketRate values for polled I/O
Objects as two groups: one foreground group, and a second
background group whose ExpPacketRate is an exact
multiple of the foreground group’s. All strobed I/O must
use the same rate as the foreground group for polled I/O.
For example, you can set some polled I/O (and all
strobed I/O) to a common foreground rate of 100 ms, and
other polled I/O to a background rate of 500 ms. To
maintain overall network determinism, the background poll
requests are interspersed evenly among each foreground
scan.

PollMode (Continued)

Chapter 2 NI-DNET Functions — ncOpenDnetIntf (Open DeviceNet Interface)

© National Instruments Corporation 2-53 NI-DNET Programmer Reference Manual

Description
(Continued)

Individual

This mode enables you to configure poll rates individually
for each polled I/O connection. In Individual mode, poll
requests are not produced as a group, but instead each
polled I/O connection communicates at an independent
rate. The rate at which each poll request is produced is
determined solely by the ExpPacketRate of that
connection’s I/O Object.

Individual polling is often used when you have detailed
knowledge of the time it takes each device to perform its
physical measurement or control function. For example, if
you have a discrete input device capable of acquiring a new
measurement every 10 ms, an analog input device with a
measurement rate of 45 ms, and a temperature sensor with
a measurement rate of 200 ms, you could use individual
polling to communicate with each device at its exact
measurement rate. Since communication occurs only at the
actual rate needed for each device, individual polling often
provides optimum network usage.

For additional information on PollMode and
ExpPacketRate , refer to Chapter 3, NI-DNET
Programming Techniques, in the NI-DNET User Manual.

Values Automatic (constant NC_POLL_AUTO, value 0)

Scanned (constant NC_POLL_SCAN, value 1)

Individual (constant NC_POLL_INDIV, value 2)

In LabVIEW, the poll mode is selected from an enumerated list.
The LabWindows/CVI function panel also provides an
enumerated list.

PollMode (Continued)

Chapter 2 NI-DNET Functions — ncOpenDnetIntf (Open DeviceNet Interface)

NI-DNET Programmer Reference Manual 2-54 © National Instruments Corporation

ObjHandle

Return Status
For information about converting the return status into a descriptive string, refer to
Appendix A, Status Handling and Error Codes.

NC_SUCCESS Success (no warning or error)

NC_ERR_BAD_PARAM Invalid parameter

NC_ERR_NOT_STOPPED Objects cannot be opened while communicating

NC_ERR_DRIVER Implementation-specific error in the NI-DNET driver

Examples
• Using LabVIEW, open Interface Object "DNET1" using baud rate 500000 , MAC ID 3,

and poll mode Scanned .

• Using C, open Interface Object "DNET0" using baud rate 125000 , MAC ID 0, and poll
mode Automatic .

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

status = ncOpenDnetIntf("DNET0", 0, 125000, NC_POLL_AUTO, &objh);

Description If the ncOpenDnetIntf function is successful, a handle to the
newly opened Interface Object is returned in ObjHandle . This
handle is used with all subsequent function calls for that
Interface Object.

The function most commonly used with the Interface Object is
ncOperateDnetIntf .

Values The encoding of ObjHandle is internal to NI-DNET.

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

© National Instruments Corporation 2-55 NI-DNET Programmer Reference Manual

ncOpenDnetIO (Open DeviceNet I/O)

Purpose
Configure and open an NI-DNET I/O Object.

Format
LabVIEW

C
NCTYPE_STATUS ncOpenDnetIO(NCTYPE_STRING IntfName,

NCTYPE_UINT32 DeviceMacId,

NCTYPE_UINT32 ConnectionType,

NCTYPE_UINT32 InputLength,

NCTYPE_UINT32 OutputLength,

NCTYPE_UINT32 ExpPacketRate,

NCTYPE_OBJH_P ObjHandle);

Input
IntfName Name of DeviceNet interface

DeviceMacId MAC ID of the remote device

ConnectionType Type of I/O connection

InputLength Number of input bytes

OutputLength Number of output bytes

ExpPacketRate Expected rate of I/O message (packet) production

Output
ObjHandle Object handle you use with all subsequent function calls

for the I/O Object

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

NI-DNET Programmer Reference Manual 2-56 © National Instruments Corporation

Function Description
ncOpenDnetIO configures and opens an NI-DNET I/O Object and returns a handle that you
use with all subsequent function calls for that object.

The I/O Object represents an I/O connection to a remote DeviceNet device (physical device
attached to your interface by a DeviceNet cable). The I/O Object usually represents
I/O communication as a master with a remote slave device. If your computer is essentially
being used as the primary controller of your DeviceNet devices, you should configure
I/O communication as a master.

You can also configure the I/O Object for I/O communication as a slave with a remote master.
If your computer is essentially being used as a peripheral device for another primary
controller, you can configure I/O communication as a slave. This is done by setting the
I/O Object’s DeviceMacId to the same MAC ID as the Interface Object (IntfMacId
parameter of ncOpenDnetIntf).

The I/O Object supports as many master/slave I/O connections as currently allowed by the
DeviceNet Specification (version 2.0). This means that you can use polled, strobed, and
COS/cyclic I/O connections simultaneously for a given device. As specified by the DeviceNet
Specification, you can only use one master/slave I/O connection of a given type for each
device (MAC ID). For example, you cannot open two polled I/O connections for the same
device.

The I/O Object is used to:

• Read data from the most recent message received on the I/O connection
(ncReadDnetIO).

• Write data for the next message produced on the I/O connection (ncWriteDnetIO).

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

© National Instruments Corporation 2-57 NI-DNET Programmer Reference Manual

Parameter Descriptions
IntfName

DeviceMacId

Description Name of the DeviceNet interface as an ASCII string with format
"DNETx" , where x is a decimal number starting at zero that indicates
which DeviceNet interface is being used. You use the NI-DNET
Hardware Configuration Utility to associate DeviceNet interface names
with physical DeviceNet ports (by double-clicking on a port’s name). If
you only have one DeviceNet board in your computer, this name is
usually DNET0. For more information on the Hardware Configuration
utility, see Chapter 3, Verify the Installation, in your getting started
manual.

Values "DNET0" , "DNET1" , …"DNET63"

In LabVIEW, the interface name is selected from an enumerated list.
The LabWindows/CVI function panel also provides an enumerated list.

Description MAC ID (device address) of the remote DeviceNet device.

Many devices use physical switches to set their MAC ID. For such
devices, you can usually determine the device’s MAC ID by examining
those switches. MAC ID 63 is usually reserved for new devices (many
devices use 63 as the factory default).

If you do not know the MAC ID of your DeviceNet device, NI-DNET
provides a utility which can display the MAC ID for you. This utility is
called SimpleWho and is described in the NI-DNET User Manual.

For I/O communication as a master to a remote slave device (the usual
case), DeviceMacId is the MAC ID of the remote DeviceNet slave
device, and thus must be different than the MAC ID of your DeviceNet
interface. If you want to configure I/O communication as a slave with a
remote master, set DeviceMacId to the same MAC ID as your
DeviceNet interface (the IntfMacId parameter of your previous call to
ncOpenDnetIntf). By associating the I/O Object with your DeviceNet
interface in this manner, you indicate that it represents
I/O communication as a slave.

Values 0 to 63

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

NI-DNET Programmer Reference Manual 2-58 © National Instruments Corporation

ConnectionType

Description Type of master/slave I/O connection. The connection type is either
Polled , Strobed , change-of-state (COS), or Cyclic . As specified by
the DeviceNet Specification, you can use only one master/slave
I/O connection of a given type for each device (MAC ID). For example,
you cannot open two polled I/O connections for the same device.

If you do not know the I/O connection types supported by your
DeviceNet device, NI-DNET provides a utility which queries the device
for both this information and the device’s supported input and output
lengths. This utility is called SimpleWho and is described in the
NI-DNET User Manual.

Change-of-state (COS) and cyclic I/O connections are acknowledged by
default. If you want to suppress acknowledgments for these
I/O connections, set the Ack Suppress driver attribute to true prior to
starting communication. For more information, refer to the description
of the I/O Object in Chapter 3, NI-DNET Objects.

Values Poll (constant NC_CONN_POLL, value 0)

Strobe (constant NC_CONN_STROBE, value 1)

COS (constant NC_CONN_COS, value 2)

Cyclic (constant NC_CONN_CYCLIC, value 3)

In LabVIEW, the connection type is selected from an enumerated list.
The LabWindows/CVI function panel also provides an enumerated list.

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

© National Instruments Corporation 2-59 NI-DNET Programmer Reference Manual

InputLength

Description Number of input bytes for the I/O connection. This is the number of
bytes read from the I/O connection using the ncReadDnetIO function.

The following information is specific to the ConnectionType setting:

Poll , COS, and Cyclic :

For these I/O connection types, the input length is the same as the
number of bytes consumed from the remote device.

Strobe as master (DeviceMacId not equal to IntfMacId):

For this I/O connection, the input length is the same as the number
of bytes consumed from the strobe response message, and must
have a value from 0 to 8.

Strobe as slave (DeviceMacId equal to IntfMacId):

For this I/O connection, the input length must have a value of 1. The
input data consists of a single boolean value (bit) obtained from the
master’s strobe command message using IntfMacId . This boolean
value is returned from the ncReadDnetIO function as a single byte.

Values Poll , COS, and Cyclic : 0 to 255

Strobe as master (DeviceMacId not equal to IntfMacId): 0 to 8

Strobe as slave (DeviceMacId equal to IntfMacId): 1

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

NI-DNET Programmer Reference Manual 2-60 © National Instruments Corporation

OutputLength

Description Number of output bytes for the I/O connection. This is the number of
bytes written to the I/O connection using the ncWriteDnetIO function.

The following information is specific to the ConnectionType setting:

Poll , COS, and Cyclic :

For these I/O connections types, the output length is the same as the
number of bytes produced to the remote device.

Strobe as master (DeviceMacId not equal to IntfMacId):

For this I/O connection, the output length must have a value of 1.
The output data consists of a single boolean value (bit) which is
placed into the strobe command message using DeviceMacId .
This boolean value is provided to the ncWriteDnetIO function as
a single byte.

Strobe as slave (DeviceMacId equal to IntfMacId):

For this I/O connection, the output length must have a value from 0
to 8. The output length is the same as the number of bytes produced
in the strobe response message.

Values Poll , COS, and Cyclic : 0 to 255

Strobe as master (DeviceMacId not equal to IntfMacId): 1

Strobe as slave (DeviceMacId equal to IntfMacId): 0 to 8

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

© National Instruments Corporation 2-61 NI-DNET Programmer Reference Manual

ExpPacketRate

Description Expected rate of I/O message (packet) production in milliseconds.

As specified in the DeviceNet Specification, the expected packet rate is
used to trigger data productions. The expected packet rate is also used
for the watchdog timer to verify that the device on the other side of the
I/O connection still exists and is producing data as expected. The
expected packet rate of each I/O connection is a major factor in
determining the overall performance of your DeviceNet network.

The following information is specific to the ConnectionType setting
and the PollMode setting of your Interface Object:

Strobe with Automatic poll mode:

When using the Automatic poll mode, the ExpPacketRate
setting is ignored for strobed I/O Objects. The rate of production for
the strobe command message is determined automatically by
NI-DNET.

Strobe with Scanned or Individual poll mode:

When using the Scanned or Individual poll mode, you must set
the ExpPacketRate to the same value for all strobed I/O Objects.
Since a single strobe command message is produced for all strobed
I/O connections, the rate of production for that message must be
identical for all strobed I/O Objects.

Poll with Automatic poll mode:

When using the Automatic poll mode, the ExpPacketRate
setting is ignored for polled I/O Objects. The rate of production for
the poll command messages is determined automatically by
NI-DNET.

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

NI-DNET Programmer Reference Manual 2-62 © National Instruments Corporation

Description
(Continued)

Poll with Scanned poll mode:

When using the Scanned poll mode, since all poll and strobe
requests are produced at the same time, you normally set the
ExpPacketRate for all polled/strobed I/O Objects to a common
value.

If you need to isolate devices that are slow to respond to poll
requests, it is possible to use different ExpPacketRate values
while still maintaining the benefits of scanned I/O. You can set all
ExpPacketRate values for polled I/O Objects as two groups, one
foreground group, and a second background group whose
ExpPacketRate is an exact multiple of the foreground group’s.
All strobed I/O must use the same rate as the foreground group for
polled I/O. For example, you can set some polled I/O (and all
strobed I/O) to a common foreground rate of 100 ms, and other
polled I/O to a background rate of 500 ms. To maintain overall
network determinism, the background poll requests are interspersed
evenly among each foreground scan.

Poll with Individual poll mode:

When using the Individual poll mode, the ExpPacketRate
determines the rate at which the poll request of each polled I/O
Object is produced. Although all strobed I/O Objects must still use
the same rate, each polled I/O Object communicates at a rate which
is independent of all other I/O connections.

Change-of-state (COS) with any poll mode:

For COS I/O Objects, the ExpPacketRate is used solely to verify
that the I/O connection still exists. If no change in data produces
I/O message within the expected packet rate, the previous data is
produced again in order to maintain the I/O connection. Since this
rate is used solely to maintain the I/O connection, it is often set to a
large value, such as 10000 (10 s).

In addition to the expected packet rate, COS I/O connections also
produce an I/O message when a change is detected in the data.
These I/O change messages do not occur at a predetermined rate.
The time between each I/O change message depends on when an
actual change takes place and how fast the device can measure new
data and detect changes.

ExpPacketRate (Continued)

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

© National Instruments Corporation 2-63 NI-DNET Programmer Reference Manual

ObjHandle

Return Status
For information about converting the return status into a descriptive string, refer to
Appendix A, Status Handling and Error Codes.

NC_SUCCESS Success (no warning or error)

NC_ERR_BAD_PARAM Invalid parameter

NC_ERR_NOT_STOPPED Objects cannot be opened while communicating

NC_ERR_DRIVER Implementation-specific error in the NI-DNET driver

NC_ERR_RSRC_LIMITS Configuration exceeds NI-DNET resource limits

Description
(Continued)

Cyclic with any poll mode:

For cyclic I/O Objects, the ExpPacketRate determines the rate at
which the I/O message is produced. Each cyclic I/O Object
communicates at a rate which is independent of all other I/O
connections.

Note regarding I/O as a slave (DeviceMacId equal to IntfMacId):

The ExpPacketRate setting applies only to I/O Objects used for
communication as a master (the usual case). For I/O Objects used
for communication as a slave, this setting is ignored because the
remote master determines the expected packet rate on behalf of your
slave I/O connection.

Values 1 to 60000

Description If the ncOpenDnetIO function is successful, a handle to the newly
opened I/O Object is returned in ObjHandle . This handle is used with
all subsequent function calls for that I/O Object.

The functions most commonly used with the I/O Object are
ncReadDnetIO and ncWriteDnetIO .

Values The encoding of ObjHandle is internal to NI-DNET.

ExpPacketRate (Continued)

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

NI-DNET Programmer Reference Manual 2-64 © National Instruments Corporation

Examples
• Using LabVIEW, open an I/O Object using interface "DNET2" , device MAC ID 15,

connection type Poll , input length 14, output length 6, and expected packet rate 40 ms.

• Using C, open an I/O Object using interface "DNET0" , device MAC ID 12, connection
type Strobe , input length 2, output length 1, and expected packet rate 100 ms.

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

status = ncOpenDnetIO("DNET0", 12, ,NC_CONN_STROBE, 2, 1, 100,
&objh);

Chapter 2 NI-DNET Functions — ncOperateDnetIntf (Operate DeviceNet Interface)

© National Instruments Corporation 2-65 NI-DNET Programmer Reference Manual

ncOperateDnetIntf (Operate DeviceNet Interface)

Purpose
Perform an operation on an NI-DNET Interface Object.

Format
LabVIEW

C
NCTYPE_STATUS ncOperateDnetIntf (NCTYPE_OBJH ObjHandle,

 NCTYPE_UINT32Opcode,

 NCTYPE_UINT32Param);

Input
ObjHandle Object handle of an open Interface Object

Opcode Operation code indicating which operation to perform

Param Parameter whose meaning is defined by Opcode

Output
None

Function Description
ncOperateDnetIntf performs an operation on an NI-DNET Interface Object.

This function is used to start and stop all DeviceNet communication for the associated
interface, including all explicit messaging and I/O connections. After you open the Explicit
Messaging Objects and I/O Objects required by your application, you must use this function
to start communication. You must also use this function to stop communication before
terminating your application.

Chapter 2 NI-DNET Functions — ncOperateDnetIntf (Operate DeviceNet Interface)

NI-DNET Programmer Reference Manual 2-66 © National Instruments Corporation

 Parameter Descriptions
ObjHandle

Description This parameter must contain an object handle returned from the
ncOpenDnetIntf function.

In LabVIEW, this parameter is passed through the VI as an output so that
it can be used for subsequent function calls for the Interface Object.

 Values The encoding of ObjHandle is internal to NI-DNET.

Opcode

Description Determines which operation to perform on the Interface Object.

Start

Start all DeviceNet communication for the associated interface. For
each Explicit Messaging Object and I/O Object which has been
opened for the interface (same IntfName), this operation
establishes the DeviceNet connection with the remote device. When
the operation establishes I/O connections, it places outputs into
active mode (data is produced on the network). If the default output
data (all bytes zero) is not valid for your application, use
ncWriteDnetIO for each I/O Object to initialize valid output data
prior to starting communication. If the interface has already been
started, this operation has no effect.

Stop

Stop all DeviceNet communication for the associated interface. For
each Explicit Messaging Object and I/O Object which has been
opened for the interface, this operation closes the DeviceNet
connection with the remote device. Although closing all NI-DNET
objects implicitly stops communication, you should perform this
operation prior to calling ncCloseObject . If the interface has
already been stopped, this operation has no effect.

Active

Place the outputs of all I/O connections into active mode. When an
I/O connection is in active mode, it produces data in its outgoing
I/O message. This operation is used after a previous Idle to restore
normal communication on all I/O Objects associated with the
interface. If the interface has already been placed into active mode
or is stopped, this operation has no effect.

Chapter 2 NI-DNET Functions — ncOperateDnetIntf (Operate DeviceNet Interface)

© National Instruments Corporation 2-67 NI-DNET Programmer Reference Manual

Param

 Description
(Continued)

Idle

Place the outputs of all I/O connections into the idle mode. When
an I/O connection is in the idle mode, it does not produce data in its
outgoing I/O message, but the I/O connection is kept open by
producing an I/O message with zero data bytes. This operation is
used when valid output data is no longer available from your
application, such as when a control algorithm has been paused. If
the interface has already been placed into idle mode or is stopped,
this operation has no effect.

Note: The DeviceNet Specification does not clearly define the
behavior of a slave device upon reception of an idle (zero length)
I/O message. Many slave devices exhibit unexpected behavior when
the Idle operation is used. If you need to suspend your application,
but want to keep I/O connections open, it is recommended that you
provide valid idle values for outputs using ncWriteDnetIO rather
than use the Idle operation.

Values Start (constant NC_OP_START, value 1)

Stop (constant NC_OP_STOP, value 2)

Active (constant NC_OP_ACTIVE, value 4)

Idle (constant NC_OP_IDLE, value 5)

In LabVIEW, the operation code is selected from an enumerated list.
The LabWindows/CVI function panel also provides an enumerated list.

Description The meaning of this parameter is defined by each operation code
(Opcode). Since none of the operations currently use this additional
parameter, it is ignored and you should normally set it to zero. In the
future, if new operations require some form of qualifying information,
this parameter may be used.

Values 0

Opcode (Continued)

Chapter 2 NI-DNET Functions — ncOperateDnetIntf (Operate DeviceNet Interface)

NI-DNET Programmer Reference Manual 2-68 © National Instruments Corporation

Return Status
For information about converting the return status into a descriptive string, refer to
Appendix A, Status Handling and Error Codes.

NC_SUCCESS Success (no warning or error)

NC_ERR_BAD_PARAM Invalid parameter

NC_ERR_DRIVER Implementation-specific error in the NI-DNET driver

Examples
• Using LabVIEW, start communication using an Interface Object.

• Using C, stop communication for the Interface Object referenced by objh .

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

status = ncOperateDnetIntf(objh, NC_OP_STOP, 0);

Chapter 2 NI-DNET Functions — ncReadDnetExplMsg (Read DeviceNet Explicit Message)

© National Instruments Corporation 2-69 NI-DNET Programmer Reference Manual

ncReadDnetExplMsg (Read DeviceNet Explicit Message)

Purpose
Read an explicit message response from an Explicit Messaging Object.

Format
LabVIEW

C
NCTYPE_STATUS ncReadDnetExplMsg(NCTYPE_OBJH ObjHandle,

NCTYPE_UINT8_P ServiceCode,

NCTYPE_UINT16 SizeofServData,

NCTYPE_ANY_P ServData,

NCTYPE_UINT16_P ActualServ
DataLength);

Input
ObjHandle Object handle of an open Explicit Messaging Object

SizeofServData Size of ServData buffer in bytes (C only)

Output
ServiceCode DeviceNet service code from response

ServData Service data from response

ActualServDataLength Actual number of service data bytes in response

Function Description
This function reads an explicit message response from an Explicit Messaging Object.

The two most commonly used DeviceNet explicit messages are the Get Attribute Single
service and the Set Attribute Single service. The easiest way to execute the Get Attribute
Single service on a remote device is to use the NI-DNET ncGetDnetAttribute function.
The easiest way to execute the Set Attribute Single service on a remote device is to use the
NI-DNET ncSetDnetAttribute function.

Chapter 2 NI-DNET Functions — ncReadDnetExplMsg (Read DeviceNet Explicit Message)

NI-DNET Programmer Reference Manual 2-70 © National Instruments Corporation

To execute services other than Get Attribute Single and Set Attribute Single, the following
sequence of function calls is used: ncWriteDnetExplMsg , ncWaitForState ,
ncReadDnetExplMsg . The ncWriteDnetExplMsg function is used to send an explicit
message request to a remote DeviceNet device. The ncWaitForState function is used to
wait for the explicit message response, and the ncReadDnetExplMsg function is used to read
that response.

Some of the DeviceNet services which use ncReadDnetExplMsg are Reset, Save, Restore,
Get Attributes All, and Set Attributes All. Although the DeviceNet Specification defines the
overall format of these services, in most cases their meaning and service data are
object-specific or vendor-specific. Unless your device requires such services and documents
them in detail, you probably do not need them for your application. For more information,
refer to the section Using Explicit Messaging Services in Chapter 3, NI-DNET Programming
Techniques, of the NI-DNET User Manual.

Parameter Descriptions
ObjHandle

ServiceCode

Description This parameter must contain an object handle returned from the
ncOpenDnetExplMsg function.

In LabVIEW, this parameter is passed through the VI as an output so that
it can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

Description Identifies the service response as either success or error. If the response
is success, this value is the same as the ServiceCode of the request
(ncWriteDnetExplMsg), and the ServData bytes are formatted as
defined by the service. If the response is error, this value is 14 hex,
ServData[0] contains a General Error Code, and ServData[1]

contains an Additional Code. Either the DeviceNet Specification
(Appendix H) or the object itself define the error codes.

Although the DeviceNet Specification requires the high bit of the service
code (hex 80) to be set in all explicit message responses, NI-DNET
clears this response indicator so that you can easily compare the actual
service code to the value used with ncWriteDnetExplMsg .

Values Same as the ServiceCode of ncWriteDnetExplMsg (success
response)
or
14 hex (error response)

Chapter 2 NI-DNET Functions — ncReadDnetExplMsg (Read DeviceNet Explicit Message)

© National Instruments Corporation 2-71 NI-DNET Programmer Reference Manual

SizeofServData

ServData

ActualServDataLength

Return Status
For information about converting the return status into a descriptive string, refer to
Appendix A, Status Handling and Error Codes.

NC_SUCCESS Success (no warning or error)

NC_ERR_BAD_PARAM Invalid parameter

Description For C, this is the size of the buffer referenced by ServData . It is used to
verify that you have enough bytes available to store the service data from
the response. This size is normally obtained using the C language
sizeof function and has no direct relation to the number of bytes
received on the network.

For LabVIEW, since the buffer for ServData is allocated automatically
by NI-DNET, this size is not needed.

The number of bytes allocated for ServData should be large enough to
hold the maximum number of service data response bytes defined for the
service.

 Values sizeof (buffer referenced by ServData)

Description Service data bytes from response. If the response is success, these bytes
are formatted as defined by the service. If the response is error, the first
byte (ServData[0]) contains a General Error Code, and the second
byte (ServData[1]) contains an Additional Code. Either DeviceNet
Specification (Appendix H) or the object itself define the error codes.

The number of service data bytes returned is the smaller of
SizeofServData and ActualServDataLength .

Values Service data bytes from response

Description Actual number of service data bytes in response. This length is obtained
from the actual response message. If this length is greater than
SizeofServData , then only SizeofServData bytes are returned in
ServData . If this length is less than or equal to SizeofServData , then
ActualServDataLength bytes are valid in ServData .

Values 0 to 100

Chapter 2 NI-DNET Functions — ncReadDnetExplMsg (Read DeviceNet Explicit Message)

NI-DNET Programmer Reference Manual 2-72 © National Instruments Corporation

NC_ERR_DRIVER Implementation-specific error in the NI-DNET driver

NC_ERR_NOT_STARTED Call made prior to starting communication

NC_ERR_READ_NOT_AVAIL Call made prior to receiving explicit message response
(Read Avail)

NC_ERR_CAN_COMM Low-level communication errors, often caused by bad
cabling

NC_ERR_BAD_NET_ID Interface Object’s MAC ID conflict with another
DeviceNet device

NC_ERR_DEVICE_INIT Problem initializing remote device for communication

NC_ERR_DEVICE_MISSING Remote device is missing from your network

NC_ERR_FRAGMENTATION Fragment received out of sequence

NC_ERR_RSRC_LIMITS Response received with more than 100 bytes of
service data

NC_ERR_TIMEOUT Connection to remote device timed out

Examples
• Using LabVIEW, read an explicit message response from an Explicit Messaging Object.

• Using C, read an explicit message response from the Explicit Messaging Object
referenced by objh .

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_UINT8 servcode;

NCTYPE_UINT8 servdata[20];

NCTYPE_UINT16 actual_len;

status = ncReadDnetExplMsg(objh, &servcode, 20, servdata,
&actual_len);

Chapter 2 NI-DNET Functions — ncReadDnetIO (Read DeviceNet I/O)

© National Instruments Corporation 2-73 NI-DNET Programmer Reference Manual

ncReadDnetIO (Read DeviceNet I/O)

Purpose
Read input data from an I/O Object.

Format
LabVIEW

C
NCTYPE_STATUS ncReadDnetIO(NCTYPE_OBJH ObjHandle,

NCTYPE_UINT32 SizeofData,

NCTYPE_ANY_P Data);

Input
ObjHandle Object handle of an open I/O Object

SizeofData Size of Data buffer in bytes (C only)

Output
Data Input data

Function Description
This function reads input data from an NI-DNET I/O Object.

Since each I/O Object continuously acquires input data from the DeviceNet network, you
normally wait for new input to become available prior to calling this function. By waiting for
new input data, your application can handle I/O data at the same rate as the DeviceNet
I/O communication. You can use the function ncCreateNotification (C only),
ncCreateOccurrence (LabVIEW only), or ncWaitForState (C or LabVIEW) to wait for
new input data.

ncReadDnetIO normally returns input data bytes obtained from the input assembly of a
remote DeviceNet slave device. The format of this input assembly is normally documented
either by the device vendor or within the DeviceNet Specification itself.

The bytes of a device’s input assembly often consist of multiple data members and not just a
single value. For C, you can often obtain each data member from the input bytes by using

Chapter 2 NI-DNET Functions — ncReadDnetIO (Read DeviceNet I/O)

NI-DNET Programmer Reference Manual 2-74 © National Instruments Corporation

typecasting. For LabVIEW, you can often obtain each data member from the input bytes using
the ncConvertFromDnetRead function. For more information on input assemblies and how
to obtain individual data members, refer to the section Using I/O Data in Your Application in
Chapter 3, NI-DNET Programming Techniques, of the NI-DNET User Manual.

Parameter Descriptions
ObjHandle

SizeofData

Data

Return Status
For information about converting the return status into a descriptive string, refer to
Appendix A, Status Handling and Error Codes.

NC_SUCCESS Success (no warning or error)

NC_ERR_BAD_PARAM Invalid parameter

Description This parameter must contain an object handle returned from the
ncOpenDnetIO function.

In LabVIEW, this parameter is passed through the VI as an output so that
it can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

Description For C, this is the size of the buffer referenced by Data . It is used to verify
that you have enough bytes available to store the input bytes. This size
is normally obtained using the C language sizeof function and has no
direct relation to the number of bytes received on the network.

For LabVIEW, since the buffer for Data is allocated automatically by
NI-DNET, this size is not needed.

The actual number of bytes received on the I/O connection is determined
by the InputLength parameter of ncOpenDnetIO and not this size.

Values sizeof (buffer referenced by Data)

Description Input data. The format of these input bytes is specific to your DeviceNet
device.

Values Input data bytes

Chapter 2 NI-DNET Functions — ncReadDnetIO (Read DeviceNet I/O)

© National Instruments Corporation 2-75 NI-DNET Programmer Reference Manual

NC_ERR_OLD_DATA Data returned from read is the same as the data returned
from the previous read. This warning occurs if you do not
wait for new input data prior to the read.

NC_ERR_CAN_COMM Low-level communication errors, often caused by bad
cabling

NC_ERR_DEVICE_INIT Problem detected in initialization of the remote
DeviceNet device when establishing the I/O connection

NC_ERR_DEVICE_MISSING The remote DeviceNet device is missing from your
network

NC_ERR_FRAGMENTATION The remote DeviceNet device sent fragments of an input
message out of sequence

NC_ERR_DRIVER Implementation-specific error in the NI-DNET driver

NC_ERR_BAD_NET_ID Interface Object’s MAC ID conflicts with another
DeviceNet device

NC_ERR_TIMEOUT Connection to remote device timed out

Examples
• Using LabVIEW, read 20 input bytes from an I/O Object.

• Using C, read 10 input bytes from the I/O Object referenced by objh .

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_UINT8 input[10];

status = ncReadDnetIO(objh, 10, input);

Chapter 2 NI-DNET Functions — ncSetDnetAttribute (Set DeviceNet Attribute)

NI-DNET Programmer Reference Manual 2-76 © National Instruments Corporation

ncSetDnetAttribute (Set DeviceNet Attribute)

Purpose
Set an attribute value for a DeviceNet device using an Explicit Messaging Object.

Format
LabVIEW

C
NCTYPE_STATUS ncSetDnetAttribute(

NCTYPE_OBJH ObjHandle,

NCTYPE_UINT16 ClassId,

NCTYPE_UINT16 InstanceId,

NCTYPE_UINT8 AttributeId,

NCTYPE_DURATION Timeout,

NCTYPE_UINT16 AttrDataLength,

NCTYPE_ANY_P AttrData

NCTYPE_UINT16_P DeviceError);

Input
ObjHandle Object handle of an open Explicit Messaging Object

ClassId Identifies the class which contains the attribute

InstanceId Identifies the instance which contains the attribute

AttributeId Identifies the attribute to set

Timeout Maximum time to wait for response from device

AttrDataLength Number of attribute data bytes to set

AttrData Attribute value to set in device

Output
DeviceError Error codes from device’s error response

Chapter 2 NI-DNET Functions — ncSetDnetAttribute (Set DeviceNet Attribute)

© National Instruments Corporation 2-77 NI-DNET Programmer Reference Manual

Function Description
This function sets the value of an attribute for a DeviceNet device using an Explicit
Messaging Object.

This function executes the Set Attribute Single service on a remote DeviceNet device.

The format of the data provided in AttrData is defined by the DeviceNet data type in the
attribute’s description. When using LabVIEW, the ncConvertForDnetWrite function can
convert this DeviceNet data type from an appropriate LabVIEW data type. When using C,
AttrData can simply point to a variable of the appropriate data type as specified in
Chapter 1, NI-DNET Data Types.

Parameter Descriptions
ObjHandle

ClassId

Description This parameter must contain an object handle returned from the
ncOpenDnetExplMsg function.

In LabVIEW, this parameter is passed through the VI as an output so that
it can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

Description Identifies the class which contains the attribute. You can find
descriptions and identifiers for each standard DeviceNet class in the
DeviceNet Specification (Volume 2, Chapter 6, The DeviceNet Object
Library). The device vendor documents vendor-specific classes.
Although the DeviceNet Specification allows 16-bit class IDs, most
class IDs are 8-bit. NI-DNET automatically used the class ID size
(16-bit or 8-bit) that is appropriate for your device.

Values 00 to FFFF hex

Chapter 2 NI-DNET Functions — ncSetDnetAttribute (Set DeviceNet Attribute)

NI-DNET Programmer Reference Manual 2-78 © National Instruments Corporation

InstanceId

AttributeId

Timeout

AttrDataLength

Description Identifies the instance which contains the attribute. Instance ID 0 is used
to set an attribute in the class itself. Other instance IDs typically are
numbered starting at 1. For example, the primary Identity Object in a
device uses instance ID 1. Although the DeviceNet Specification allows
16-bit instance IDs, most instance IDs are 8-bit. NI-DNET
automatically uses the instance ID size (16-bit or 8-bit) that is
appropriate for your device.

Values 00 to FFFF hex

Description Identifies the attribute to set. The class and instance descriptions list
attribute IDs. The attribute’s description also lists the DeviceNet data
type for the attribute’s value.

Values 00 to FF hex

Description Maximum time to wait for response from device. To set the attribute in
the device, an explicit message request for the Set Attribute Single
service is sent to the device. After sending the service request, this
function must wait for the explicit message response for Set Attribute
Single. This parameter specifies the maximum number of milliseconds
to wait for the response before giving up. If the timeout expires before
the response is received, this function returns a status of 80000001 hex
(NC_ERR_TIMEOUT with an error qualifier of
NC_QUAL_TIMO_FUNCTION).

For most DeviceNet devices, a Timeout of 100 ms is appropriate.

The special timeout value of FFFFFFFF hex is used to wait indefinitely.

Values 1 to 1000

or
FFFFFFFF hex (infinite duration, constant NC_DURATION_INFINITE)

Description Number of attribute data bytes to set. This length also specifies the
number of bytes provided in AttrData .

Values 0 to 99

Chapter 2 NI-DNET Functions — ncSetDnetAttribute (Set DeviceNet Attribute)

© National Instruments Corporation 2-79 NI-DNET Programmer Reference Manual

AttrData

DeviceError

Description Attribute value to set in device.

The format of the data provided in AttrData is defined by the
DeviceNet data type in the attribute’s description. When using
LabVIEW, the ncConvertForDnetWrite function can convert this
DeviceNet data type from an appropriate LabVIEW data type. When
using C, AttrData can simply point to a variable of the appropriate data
type as specified in Chapter 1, NI-DNET Data Types.

The AttrDataLength parameter specifies the number of attribute data
bytes to set.

Values Attribute value to set in device

Description Error codes from device’s error response.

If the remote device responds successfully to the Set Attribute Single
service, the return status is NC_SUCCESS, and DeviceError returns 0.

If the remote device returns an error response for the Set Attribute Single
service, the return status is NC_ERR_DNET_ERR_RESP, and
DeviceError returns the error codes from the response.

The General Error Code from the device’s error response is returned in
the low byte of DeviceError . Common values for General Error Code
include Attribute Not Supported (14 hex), Object Does Not Exist
(16 hex), and Invalid Attribute Value (09 hex).

The Additional Code from the device’s error response is returned in the
high byte of DeviceError . The Additional Code provides additional
information that further describes the error. If no additional information
is needed, then the value FF hex is placed into this field.

The DeviceNet Specification documents values for the General Error
Code and Additional Code. You can find common error code values in
Appendix H, DeviceNet Error Codes in the DeviceNet Specification.
The object description lists object-specific error codes. Your device’s
documentation lists vendor-specific error codes.

Values Error codes from the device’s error response.

Chapter 2 NI-DNET Functions — ncSetDnetAttribute (Set DeviceNet Attribute)

NI-DNET Programmer Reference Manual 2-80 © National Instruments Corporation

Return Status
For information about converting the return status into a descriptive string, refer to
Appendix A, Status Handling and Error Codes.

NC_SUCCESS Success (no warning or error)

NC_ERR_BAD_PARAM Invalid parameter

NC_ERR_TIMEOUT Timeout expired before response received from device

NC_ERR_DRIVER Implementation-specific error in the NI-DNET driver

NC_ERR_NOT_STARTED Call made prior to starting communication

NC_ERR_CAN_COMM Low-level communication errors, often caused by bad
cabling

NC_ERR_BAD_NET_ID Interface Object’s MAC ID conflict with another
DeviceNet device

NC_ERR_DEVICE_INIT Problem initializing remote device for communication

NC_ERR_DEVICE_MISSING Remote device is missing from your network

NC_ERR_FRAGMENTATION Fragment received out of sequence

NC_ERR_DNET_ERR_RESP Error response received from remote DeviceNet device
(see Device Error)

Examples
• Using LabVIEW, set the Input Range attribute of an Analog Input object. The Input

Range is contained in instance 3 of an Analog Input Object (class ID 0A hex , instance
ID 3, attribute ID 7). The DeviceNet data type for Input Range is USINT, for which the
LabVIEW data type U8 should be used. The Timeout is 40 ms.

• Using C, set the MAC ID attribute of a remote DeviceNet device using the Explicit
Messaging Object referenced by objh . The MAC ID is contained in the DeviceNet

Chapter 2 NI-DNET Functions — ncSetDnetAttribute (Set DeviceNet Attribute)

© National Instruments Corporation 2-81 NI-DNET Programmer Reference Manual

Object (class ID 3, instance ID 1, attribute ID 1). The DeviceNet data type for Device
Type is USINT, for which the NI-DNET data type NCTYPE_UINT8 should be used.

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_UINT8 mac_id;

mac_id = 12;

status = ncSetDnetAttribute(objh, 0x03, 0x01, 0x01, 100, 1,
&mac_id);

Chapter 2 NI-DNET Functions — ncSetDriverAttr (Set Driver Attribute)

NI-DNET Programmer Reference Manual 2-82 © National Instruments Corporation

ncSetDriverAttr (Set Driver Attribute)

Purpose
Set the value of an attribute in the NI-DNET driver.

Format
LabVIEW

C
NCTYPE_STATUS ncSetDriverAttr (NCTYPE_OBJH ObjHandle,

NCTYPE_ATTRID AttrId,

NCTYPE_UINT32 SizeofAttr,

NCTYPE_ANY_P Attr)

Input
ObjHandle Object handle of an open Explicit Messaging Object,

I/O Object, or Interface Object

AttrId Identifier of the attribute to set

SizeofAttr Size of the Attr buffer in bytes (C only)

Attr New attribute value

Output
None

Function Description
This function sets the value of an attribute in the NI-DNET driver software. NI-DNET objects
use attributes to represent configuration settings, status, and other information.

Since you only need to access NI-DNET driver attributes under special circumstances, this
function is seldom used. For information about the attributes of each NI-DNET object, refer
to Chapter 3, NI-DNET Objects.

This function only applies to the NI-DNET software on your computer and cannot be used to
set an attribute in a remote DeviceNet device. To set an attribute in a remote DeviceNet
device, use the ncSetDnetAttribute function.

Chapter 2 NI-DNET Functions — ncSetDriverAttr (Set Driver Attribute)

© National Instruments Corporation 2-83 NI-DNET Programmer Reference Manual

 Parameter Descriptions
ObjHandle

AttrId

SizeofAttr

Attr

Description This parameter must contain an object handle returned from the
ncOpenDnetExplMsg , ncOpenDnetIntf , or ncOpenDnetIO
function.

In LabVIEW, this parameter is passed through the VI as an output so that
it can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

Description Identifier of the NI-DNET attribute. For each NI-DNET object, a list of
supported attribute identifiers is provided in Chapter 3, NI-DNET
Objects.

Values 80000000 to 8000FFFF hex (high bit differentiates from
DeviceNet IDs)

Description For C, this is the size of the buffer referenced by Attr . It is used to verify
that the Attr buffer is large enough to hold the attribute’s new value.
This size is normally obtained using the C language sizeof function.

For LabVIEW, since Attr is obtained directly as an input, this size is
not needed.

Values sizeof (buffer referenced by Attr)

Description New attribute value. The value is usually provided in an unsigned 32-bit
integer (and thus Attr is of type NCTYPE_UINT32_P).

Values New value of NI-DNET attribute

Chapter 2 NI-DNET Functions — ncSetDriverAttr (Set Driver Attribute)

NI-DNET Programmer Reference Manual 2-84 © National Instruments Corporation

Return Status
For information about converting the return status into a descriptive string, refer to
Appendix A, Status Handling and Error Codes.

NC_SUCCESS Success (no warning or error)

NC_ERR_BAD_PARAM Invalid parameter

NC_ERR_DRIVER Implementation-specific error in the NI-DNET driver

NC_ERR_NOT_SUPPORTED Driver attribute not supported for this NI-DNET object

NC_ERR_NOT_STOPPED Attempted to set driver attribute while communicating

Examples
• Using LabVIEW, verify vendor ID20 for the DeviceNet device referenced by an Explicit

Messaging Object.

• Using C, suppress acknowledgments for the COS I/O Object referenced by objh .

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_BOOL ack_sup;

ack_sup = NC_TRUE;

status = ncSetDriverAttr(objh, NC_ATTR_ACK_SUPPRESS,
sizeof(ack_sup), &ack_sup);

Chapter 2 NI-DNET Functions — ncStatusToString (Status To String)

© National Instruments Corporation 2-85 NI-DNET Programmer Reference Manual

ncStatusToString (Status To String)

Purpose
Convert status returned from an NI-DNET function into a descriptive string.

Format
LabVIEW
Not applicable (see DeviceNet Error Handler)

C
void ncStatustoString(

NCTYPE_STATUS Status,

NCTYPE_UINT32 SizeofString,

NCTYPE_STRING String);

Input
Status Status returned from a previous function call

SizeofString Size of String buffer in bytes

Output
String Textual string which describes the function status

Function Description
Each C language NI-DNET function returns a value which indicates the status of the function
call. This status value encodes the severity of the error (success, warning, or error), a primary
error code, and a qualifier for the error code. For example, if NI-DNET cannot initialize
communication with a device, the status field is true (indicating an error severity), the lower
bits of code indicate the NC_ERR_DEVICE_INIT error code, and the higher bits of code
indicate the exact cause of the initialization problem.

This function converts a status value returned from an NI-DNET function into a descriptive
string. By displaying this string when an error or warning is detected, you can avoid
interpretation of individual bit fields to debug the problem.

The ncStatustoString function is not applicable to LabVIEW programming. Use the
LabVIEW DeviceNet Error Handler function to convert an NI-DNET status value into
a descriptive string.

Chapter 2 NI-DNET Functions — ncStatusToString (Status To String)

NI-DNET Programmer Reference Manual 2-86 © National Instruments Corporation

For more information on NI-DNET status, including overall status handling, the encoding of
bit fields in status, and problem resolutions for each error, refer to Appendix A, Status
Handling and Error Codes.

Parameter Descriptions
Status

SizeofString

String

Return Status
No status is returned because this function cannot encounter errors.

Description This parameter must contain a status value returned from a previous call
to an NI-DNET function. You normally call ncStatustoString only
when the status is nonzero, indicating an error or warning condition.

Values Value of data type NCTYPE_STATUS, returned from an NI-DNET
function call

Description This is the size of the buffer referenced by String . The
ncStatustoString function copies at most 80 SizeofString bytes
into the string and cuts off the text as needed. This size is normally
obtained using the C language sizeof function.

Although you can often obtain an adequate description with fewer bytes,
an 80-byte buffer is large enough to hold any NI-DNET status
description.

Values sizeof (buffer referenced by String)

Description Textual string which describes the function status. The string is NULL
terminated just as any other C language string. The number of bytes
returned is the smaller of SizeofString and the number of bytes
contained in the actual description (maximum 80).

Values Textual string which describes the function status

Chapter 2 NI-DNET Functions — ncStatusToString (Status To String)

© National Instruments Corporation 2-87 NI-DNET Programmer Reference Manual

Example
Using C, check the status returned from the ncOpenDnetIntf function, and if not success,
print a descriptive string.

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

char descr[80];

status = ncOpenDnetIntf("DNET0", 0, 125000, NC_POLL_AUTO,

&objh);

if (status != NC_SUCCESS) {

ncStatustoString(status, sizeof(descr), descr);

printf("ncOpenDnetIntf: %s\n", descr);

}

Chapter 2 NI-DNET Functions — ncWaitForState (Wait For State)

NI-DNET Programmer Reference Manual 2-88 © National Instruments Corporation

ncWaitForState (Wait For State)

Purpose
Wait for one or more states to occur in an object.

Format
LabVIEW

C
NCTYPE_STATUS ncWaitForState(NCTYPE_OBJH ObjHandle,

NCTYPE_STATE DesiredState,

NCTYPE_DURATION Timeout,

NCTYPE_STATE_P CurrentState)

Input
ObjHandle Object handle of an open Explicit Messaging Object or

an I/O Object

DesiredState States to wait for

Timeout Number of milliseconds to wait for one of the desired
states

Output
CurrentState Current state of object

Function Description
Use ncWaitforState to wait for one or more states to occur in the object specified by
ObjHandle .

One common use of this function is to wait for the Established state of an Explicit
Messaging Object. Another common use of this function is to wait for an explicit message
response resulting from a call to ncWriteDnetExplMsg then read that response using
ncReadDnetExplMsg .

While waiting for the desired states, ncWaitForState suspends the current execution.
For C, this may suspend your front panel user interface. For LabVIEW, you can still access
your front panel and functions that are not directly connected to ncWaitForState can still

Chapter 2 NI-DNET Functions — ncWaitForState (Wait For State)

© National Instruments Corporation 2-89 NI-DNET Programmer Reference Manual

execute. If you want to allow other code in your application to execute while waiting
for NI-DNET states, refer to the ncCreateNotification (C only) and
ncCreateOccurrence (LabVIEW only) functions. You cannot use the ncWaitForState
function at the same time as ncCreateNotification .

Parameter Descriptions
ObjHandle

Description This parameter must contain an object handle returned from the
ncOpenDnetExplMsg or ncOpenDnetIO function.

In LabVIEW, this parameter is passed through the VI as an output so that
it can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

DesiredState

Description States to wait for. Each state is represented by a single bit so that you can
wait for multiple states simultaneously. For example, if NI-DNET
provides states with values of hex 1 and hex 4, then DesiredState of
hex 5 waits for either state to occur.

Read Avail for the I/O Object

For the I/O Object, the Read Avail state is set when a new input
message is received from the network. The Read Avail state is
cleared when you call ncReadDnetIO . For example, for a
Change-of-state (COS) I/O connection, the Read Avail state is set
when a COS input message is received.

Although you can use ncWaitForState with an I/O Object, it is
often preferable to use a notification (ncCreateNotification or
ncCreateOccurrence). Use of a notification callback or
occurrence for the Read Avail state allows your application to
handle multiple I/O connections independently.

Chapter 2 NI-DNET Functions — ncWaitForState (Wait For State)

NI-DNET Programmer Reference Manual 2-90 © National Instruments Corporation

Description
(Continued)

Read Avail for the Explicit Messaging Object

For the Explicit Messaging Object, the Read Avail state is set
when an explicit message response is received from the network.
The Read Avail state is cleared when you call
ncReadDnetExplMsg . An explicit message response is received
only after you send an explicit message request using
ncWriteDnetExplMsg . The following sequence of calls is typical:
ncWriteDnetExplMsg , ncWaitForState ,
ncReadDnetExplMsg . This is the sequence used internally by the
ncGetDnetAttribute and ncSetDnetAttribute functions.

The Read Avail state is not needed when using the explicit
messaging functions ncGetDnetAttribute and
ncSetDnetAttribute because both of these functions wait for
the explicit message response internally.

Established for the Explicit Messaging Object

For the Explicit Messaging Object, the Established state is clear
(not established) before you start communication using
ncOperateDnetIntf . Once you start communication, the
Established state remains clear until the explicit message
connection has been successfully established with the remote
DeviceNet device. Once the explicit message connection has been
established, the Established state is set and remains set for as
long as the explicit message connection is open.

Until the Established state is set for the Explicit Messaging
Object, all calls to ncGetDnetAttribute ,
ncSetDnetAttribute , or ncWriteDnetExplMsg return the
error NC_ERR_NOT_STARTED. Before you call any of these
functions in your application, you must first wait for the
Established state to set.

Once the Established state is set, unless communication
problems occur with the device (NC_ERR_TIEMOUT), it remains set
until you stop communication using ncOperateDnetIntf .

DesiredState (Continued)

Chapter 2 NI-DNET Functions — ncWaitForState (Wait For State)

© National Instruments Corporation 2-91 NI-DNET Programmer Reference Manual

Description
(Continued)

Error for the I/O Object or Explicit Messaging Object

The Error state is set whenever a communication error occurs
while attempting to communicate with the remote DeviceNet
device. These communication errors are generally equivalent to the
errors returned from read/write functions like ncReadDnetIO and
ncWriteDnetIO . The Error state is cleared only after NI-DNET
is able to communicate successfully with the device.

The Error state is typically used in combination with either the
Read Avail or the Established state. While waiting for one of
these states, waiting for the Error state ensures that if a
communication error occurs, the wait returns immediately with the
appropriate error code.

For example, consider an explicit message connection that
NI-DNET cannot initialize properly. If you call ncWaitForState
with DesiredState of Established and a Timeout of 10000 ,
after 10 seconds the function returns the NC_ERR_TIMEOUT error. If
you call ncWaitForState with DesiredState of Established
OR Error and a Timeout of 10000 , the function immediately
returns the NC_ERR_DEVICE_INIT error that indicates the specific
problem encountered.

Values A combination of one or more of the following bit values:

1 hex (Read Avail , constant NC_ST_READ_AVAIL)

8 hex (Established , constant NC_ST_ESTABLISHED)

10 hex (Error , constant NC_ST_ERROR)

In LabVIEW and the LabWindows/CVI function panel, to facilitate
combining multiple states, you can select a valid combination from an
enumerated list of all valid combinations. This list contains the names of
each state in the combination, such as Read Avail OR Error .

DesiredState (Continued)

Chapter 2 NI-DNET Functions — ncWaitForState (Wait For State)

NI-DNET Programmer Reference Manual 2-92 © National Instruments Corporation

Timeout

CurrentState

Return Status
For information about converting the return status into a descriptive string, refer to
Appendix A, Status Handling and Error Codes.

NC_SUCCESS Success (no warning or error)

NC_ERR_BAD_PARAM Invalid parameter

NC_ERR_TIMEOUT Timeout expired before desired states occurred

NC_ERR_DRIVER Implementation-specific error in the NI-DNET driver

NC_ERR_SUPPORTED Only one pending wait or notification is allowed at any
given time

NC_ERR_CAN_COMM Low-level communication errors, often caused by bad
cabling

NC_ERR_BAD_NET_ID Interface Object’s MAC ID conflicts with another
DeviceNet device

Description Number of milliseconds to wait for one of the desired states.
If the timeout expires before one of the desired states occurs,
ncWaitForState returns a status of 80000001 hex
(NC_ERR_TIMEOUT with an error qualifier of
NC_QUAL_TIMO_FUNCTION).

The special timeout value of FFFFFFFF hex is used to wait indefinitely.

Values 1 to 200000

or
FFFFFFFF hex (infinite duration, constant NC_DURATION_INFINITE)

Description Current state of the object. If one of the desired states occurs, it provides
the current value of the Read Avail , Established , and Error states.
If the Timeout expires before one of the desired states occurs, it has the
value0.

Values 0 (desired states did not occur)

or

A combination of one or more of the following bit values:

1 hex (Read Avail , constant NC_ST_READ_AVAIL)
8 hex (Established , constant NC_ST_ESTABLISHED)
10 hex (Error , constant NC_ST_ERROR)

Chapter 2 NI-DNET Functions — ncWaitForState (Wait For State)

© National Instruments Corporation 2-93 NI-DNET Programmer Reference Manual

NC_ERR_DEVICE_INIT Problem initializing remote device for communication

NC_ERR_DEVICE_MISSING Remote device is missing from your network

NC_ERR_FRAGMENTATION Fragment received out of sequence

Examples
• Using LabVIEW, wait up to 10 seconds for the Read Avail state of an Explicit

Messaging Object.

• Using C, wait up to 10 seconds for the Read Avail state of the Explicit Messaging
Object referenced by objh .

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_STATE currstate;

status = ncWaitForState(objh, NC_ST_READ_AVAIL, 10000,
&currstate);

Chapter 2 NI-DNET Functions — ncWriteDnetExplMsg (Write DeviceNet Explicit Message)

NI-DNET Programmer Reference Manual 2-94 © National Instruments Corporation

ncWriteDnetExplMsg (Write DeviceNet Explicit Message)

Purpose
Write an explicit message request using an Explicit Messaging Object.

Format
LabVIEW

C
NCTYPE_STATUS ncWriteDnetExplMsg(

NCTYPE_OBJH ObjHandle,

NCTYPE_UINT8 ServiceCode,

NCTYPE_UINT16 ClassId,

NCTYPE_UINT16 InstanceId,

NCTYPE_UINT16 ServDataLength,

NCTYPE_ANY_P ServData);

Input
ObjHandle Object handle of an open Explicit Messaging Object

ServiceCode Identifies the service being requested

ClassId Identifies the class to which service is directed

InstanceId Identifies the instance to which service is directed

ServDataLength Number of service data bytes for request

ServData Service data for request

Output
None

Chapter 2 NI-DNET Functions — ncWriteDnetExplMsg (Write DeviceNet Explicit Message)

© National Instruments Corporation 2-95 NI-DNET Programmer Reference Manual

Function Description
This function writes an explicit message request using an Explicit Messaging Object.

The two most commonly used DeviceNet explicit messages are the Get Attribute Single
service and the Set Attribute Single service. The easiest way to execute the Get Attribute
Single service on a remote device is to use the NI-DNET ncGetDnetAttribute function.
The easiest way to execute the Set Attribute Single service on a remote device is to use the
NI-DNET ncSetDnetAttribute function.

To execute services other than Get Attribute Single and Set Attribute Single, the following
sequence of function calls is used: ncWriteDnetExplMsg , ncWaitForState ,
ncReadDnetExplMsg . The ncWriteDnetExplMsg function is used to send an explicit
message request to a remote DeviceNet device. The ncWaitForState function is used to
wait for the explicit message response, and the ncReadDnetExplMsg function is used to read
that response.

Some DeviceNet services that use ncWriteDnetExplMsg are Reset, Save, Restore, Get
Attributes All, and Set Attributes All. Although the DeviceNet Specification defines the
overall format of these services, in most cases their meaning and service data are
object-specific or vendor-specific. Unless your device requires such services and documents
them in detail, you probably do not need them for your application. For more information,
refer to the section Using Explicit Messaging Services in Chapter 3, NI-DNET Programming
Techniques, of the NI-DNET User Manual.

Parameter Descriptions
ObjHandle

ServiceCode

Description This parameter must contain an object handle returned from the
ncOpenDnetExplMsg function.

In LabVIEW, this parameter is passed through the VI as an output so that
it can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

Description Identifies the service being requested. You can find service code values
for the commonly used DeviceNet services in the DeviceNet
Specification (Volume 1, Appendix G, DeviceNet Explicit Messaging
Services). The device’s vendor documents vendor-specific service
codes.

Values 00 to FF hex

Chapter 2 NI-DNET Functions — ncWriteDnetExplMsg (Write DeviceNet Explicit Message)

NI-DNET Programmer Reference Manual 2-96 © National Instruments Corporation

ClassId

InstanceId

ServDataLength

ServData

Description Identifies the class to which service is directed. You can find
descriptions and identifiers for each standard DeviceNet class in the
DeviceNet Specification (Volume 2, Chapter 6, The DeviceNet Object
Library). The device’s vendor documents vendor-specific classes.
Although the DeviceNet Specification allows 16-bit class IDs, most
class IDs are 8-bit. NI-DNET automatically uses the class ID size (16-bit
or 8-bit) that is appropriate for your device.

Values 00 to FFFF hex

Description Identifies the instance to which service is directed. Instance ID 0 is used
to direct the service toward the class itself. Other instance IDs typically
are numbered starting at 1. For example, the primary Identity Object in
a device uses instance ID 1. Although the DeviceNet Specification
allows 16-bit instance IDs, most instance IDs are 8-bit. NI-DNET
automatically uses the instance ID size (16-bit or 8-bit) that is
appropriate for your device.

Values 00 to FFFF hex

Description Number of service data bytes for the request. This length also specifies
the number of bytes provided in ServData .

Values 0 to 100

Description Service data bytes for the request. The format of this data is specific to
the service code being used. For commonly used services which are not
object-specific, the format of this data is defined in the DeviceNet
Specification (Volume 1, Appendix G, DeviceNet Explicit Messaging
Services). For object-specific service codes, the format of this data is
defined in the object specification. For vendor-specific service codes,
the format of this data is defined by the device vendor.

The ServDataLength parameter specifies the number of service data
bytes sent in the request (and provided in this buffer).

Values Service data bytes for the request

Chapter 2 NI-DNET Functions — ncWriteDnetExplMsg (Write DeviceNet Explicit Message)

© National Instruments Corporation 2-97 NI-DNET Programmer Reference Manual

Return Status
For information about converting the return status into a descriptive string, refer to
Appendix A, Status Handling and Error Codes.

NC_SUCCESS Success (no warning or error)

NC_ERR_BAD_PARAM Invalid parameter

NC_ERR_DRIVER Implementation-specific error in the NI-DNET driver

NC_ERR_NOT_STARTED Call made prior to starting communication

NC_ERR_CAN_COMM Low-level communication errors, often caused by bad
cabling

NC_ERR_BAD_NET_ID Interface Object’s MAC ID conflicts with another
DeviceNet device

NC_ERR_DEVICE_INIT Problem initializing remote device for communication

NC_ERR_DEVICE_MISSING Remote device is missing from your network

NC_ERR_FRAGMENTATION Fragment received out of sequence

NC_ERR_TIMEOUT Connection to remote device timed out

Examples
• Using LabVIEW, save the parameters of Parameter Object instance 2 to non-volatile

memory. The service code for Save is 16 hex. The Parameter Object is class ID 0F hex.
The Parameter Object does not define any service data bytes for Save.

• Using C, reset a DeviceNet device to its power on state using the Explicit Messaging
Object referenced by objh . The service code for Reset is 05 hex. The Identity Object
(class ID 1, instance ID 1) is used to reset DeviceNet devices. The Identity Object defines

Chapter 2 NI-DNET Functions — ncWriteDnetExplMsg (Write DeviceNet Explicit Message)

NI-DNET Programmer Reference Manual 2-98 © National Instruments Corporation

a single byte of service data, where 0 is used to simulate a power cycle and 1 is used to
reset the device to its out-of-box state.

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_UINT8 type_of_reset;

type_of_reset = 0;

status = ncWriteDnetExplMsg(objh, 0x05, 0x01, 0x01, 1,
&type_of_reset);

Chapter 2 NI-DNET Functions — ncWriteDnetIO (Write DeviceNet I/O)

© National Instruments Corporation 2-99 NI-DNET Programmer Reference Manual

ncWriteDnetIO (Write DeviceNet I/O)

Purpose
Write output data to an I/O Object.

Format
LabVIEW

C
NCTYPE_STATUS ncWriteDnetIO(NCTYPE_OBJH ObjHandle,

NCTYPE_UINT32 SizeofData,

NCTYPE_ANY_P Data);

Input
ObjHandle Object handle of an open I/O Object

SizeofData Size of Data buffer in bytes (C only)

Data Output data

Output
None

Function Description
This function writes output data to an NI-DNET I/O Object.

Since each I/O Object continuously produces output data onto the DeviceNet network at a
specified rate, calling ncWriteDnetIO multiple times for each output message is redundant
and can often waste valuable processor time. To synchronize calls to ncWriteDnetIO with
each output message, you can wait for input data (see ncReadDnetIO), or if no input data
exists for the device, you can use an idle wait (such as wait for 10 ms).

The output data bytes passed to ncWriteDnetIO are normally sent to the output assembly of
a remote DeviceNet slave device. The format of this output assembly is normally documented
either by the device vendor or within the DeviceNet Specification itself.

The bytes of a device’s output assembly often consist of multiple data members and not just
a single value. For C, you can often place each data member into the output bytes by using

Chapter 2 NI-DNET Functions — ncWriteDnetIO (Write DeviceNet I/O)

NI-DNET Programmer Reference Manual 2-100 © National Instruments Corporation

typecasting. For LabVIEW, you can often place each data member into the output bytes using
the ncConvertForDnetWrite function. For more information on output assemblies and
how to place individual data members into the output bytes, refer to the section Using I/O
Data in Your Application in Chapter 3, NI-DNET Programming Techniques, in the NI-DNET
User Manual.

 Parameter Descriptions
ObjHandle

SizeofData

Data

Description This parameter must contain an object handle returned from the
ncOpenDnetIO function.

In LabVIEW, this parameter is passed through the VI as an output so that
it can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

Description For C, this is the size of the buffer referenced by Data . It is used to verify
that the Data buffer is large enough to hold the output bytes. This size
is normally obtained using the C language sizeof function and has no
direct relation to the number of bytes produced on the network.

For LabVIEW, since Data is obtained directly as an input, this size is
not needed.

The actual number of bytes produced on the I/O connection is
determined by the OutputLength parameter of ncOpenDnetIO and
not this size.

Values sizeof (buffer referenced by Data)

Description Output data. The format of these output bytes is specific to your
DeviceNet device.

 Values Output data bytes

Chapter 2 NI-DNET Functions — ncWriteDnetIO (Write DeviceNet I/O)

© National Instruments Corporation 2-101 NI-DNET Programmer Reference Manual

Return Status
For information about converting the return status into a descriptive string, refer to
Appendix A, Status Handling and Error Codes.

NC_SUCCESS Success (no warning or error)

NC_ERR_BAD_PARAM Invalid parameter

NC_ERR_CAN_COMM Low-level communication errors, often caused by bad
cabling

NC_ERR_DEVICE_INIT Problem detected in initialization of the remote
DeviceNet device when establishing the I/O connection

NC_ERR_DEVICE_MISSING The remote DeviceNet device is missing from your
network

NC_ERR_DRIVER Implementation-specific error in the NI-DNET driver

NC_ERR_BAD_NET_ID Interface Object’s MAC ID conflicts with another
DeviceNet device

NC_ERR_TIMEOUT Connection to remote device timed out

Examples
• Using LabVIEW, write 4 output bytes to an I/O Object.

• Using C, write 10 output bytes to the I/O Object referenced by objh .

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_UINT8 output[10];

status = ncWriteDnetIO(objh, 10, output);

© National Instruments Corporation 3-1 NI-DNET Programmer Reference Manual

3
NI-DNET Objects

This chapter describes each NI-DNET object, lists the functions which can be used with the
object, and describes each of the object’s driver attributes. The description of each object is
structured as follows:

Description
Gives an overview of the major features and uses of the object.

Functions
Lists each NI-DNET function which can be used with the object. For information on how each
NI-DNET function is used with the object, refer to Chapter 2, NI-DNET Functions.

Driver Attributes
Lists and describes the NI-DNET driver attributes for each object. The driver attributes are
listed in alphabetical order.

For each driver attribute, the description lists its data type, attribute ID, and permissions.
Driver attribute permissions consist of one of the following:

Get You can get the attribute at any time using
ncGetDriverAttr , but never set it.

Set You can get the attribute at any time using
ncGetDriverAttr . You can set the attribute using
ncSetDriverAttr , but only prior to starting
communication using ncOperateDnetIntf .

Chapter 3 NI-DNET Objects — Explicit Messaging Object

NI-DNET Programmer Reference Manual 3-2 © National Instruments Corporation

Explicit Messaging Object

Description
The Explicit Messaging Object represents an explicit messaging connection to a remote
DeviceNet device (physical device attached to your interface by a DeviceNet cable). Since
only one explicit messaging connection is created for a given device, the Explicit Messaging
Object is also used for features that apply to the device as a whole.

The Explicit Messaging Object is used to:

• Execute the DeviceNet Get Attribute Single service on the remote device
(ncGetDnetAttribute).

• Execute the DeviceNet Set Attribute Single service on the remote device
(ncSetDnetAttribute).

• Send any other explicit message requests to the remote device and receive the associated
explicit message response (ncWriteDnetExplMsg , ncReadDnetExplMsg).

• Configure NI-DNET settings that apply to the entire remote device.

Functions

Function Name Function Description

DeviceNet Error Handler Convert status returned from an NI-DNET function
into a descriptive string (LabVIEW only)

ncCloseObject Close an NI-DNET object

ncConvertForDnetWrite Convert an appropriate LabVIEW data type for
writing data bytes on the DeviceNet network

ncConvertFromDnetRead Convert data read from the DeviceNet network into
an appropriate LabVIEW data type

ncCreateNotification Create a notification callback for an object (C only)

ncCreateOccurrence Create a notification occurrence for an object
(LabVIEW only)

ncGetDnetAttribute Get an attribute value from a DeviceNet device

ncGetDriverAttr Get the value of an attribute in the NI-DNET driver

ncOpenDnetExplMsg Configure and open an NI-DNET Explicit
Messaging Object

ncReadDnetExplMsg Read an explicit message response

Chapter 3 NI-DNET Objects — Explicit Messaging Object

© National Instruments Corporation 3-3 NI-DNET Programmer Reference Manual

Driver Attributes
Current State

ncSetDnetAttribute Set an attribute value for a DeviceNet device

ncSetDriverAttr Set the value of an attribute in the NI-DNET driver

ncStatusToString Convert status returned from an NI-DNET function
into a descriptive string (C only)

ncWaitForState Wait for one or more states to occur in an object

ncWriteDnetExplMsg Write an explicit message request

Attribute ID NC_ATTR_STATE

Hex Encoding 80000009

Data Type NCTYPE_STATE

Permissions Get

Description Current state of the NI-DNET object. This driver attribute provides
the current Read Avail , Established , and Error states as
described in the ncWaitForState function.

Use the ncGetDriverAttr function when you need to determine the
current state of an object but you do not need to wait for a specific
state. For example, if you want to determine whether an error has
occurred, you can get the Current State attribute to check the Error
state. Since read and write functions handle reporting of errors
automatically, using ncGetDriverAttr to check for such errors is
typically done only if the read and write functions are not used often.

Functions (Continued)

Function Name Function Description

Chapter 3 NI-DNET Objects — Explicit Messaging Object

NI-DNET Programmer Reference Manual 3-4 © National Instruments Corporation

Device Type

Mac Id

Attribute ID NC_ATTR_DEVICE_TYPE

Hex Encoding 80000084

Data Type NCTYPE_UINT16

Permissions Set

Description Device Type of the device as reported in the Device Type attribute of
device’s Identity Object. This attribute is used to verify that the device
is the same one expected by your application. If the Device Type does
not match, NI-DNET returns the NC_ERR_DEVICE_INIT error with a
qualifier of NC_QUAL_DEVI_DEVTYPE.

The Device Type indicates conformance to a specific device profile,
such as Photoelectric Sensor or Position Controller.

If you do not call ncSetDriverAttr to set the Device Type, a default
value of zero is used. When Device Type is zero, NI-DNET does not
verify the device’s Device Type.

Attribute ID NC_ATTR_MAC_ID

Hex Encoding 80000080

Data Type NCTYPE_UINT8

Permissions Get

Description This driver attribute allows you to get the DeviceMacId originally
passed into ncOpenDnetExplMsg .

Chapter 3 NI-DNET Objects — Explicit Messaging Object

© National Instruments Corporation 3-5 NI-DNET Programmer Reference Manual

Product Code

Vendor Id

Attribute ID NC_ATTR_PRODUCT_CODE

Hex Encoding 80000083

Data Type NCTYPE_UINT16

Permissions Set

Description Product Code of the device as reported in the Product Code attribute
of device’s Identity Object. This attribute is used to verify that the
device is the same one expected by your application. If the Product
Code does not match, NI-DNET returns the NC_ERR_DEVICE_INIT
error with a qualifier of NC_QUAL_DEVI_PRODCODE.

The Product Code is a vendor-specific value which identifies a
particular product within a device type.

If you do not call ncSetDriverAttr to set the Product Code, a
default value of zero is used. When Product Code is zero, NI-DNET
does not verify the device’s Product Code.

Attribute ID NC_ATTR_VENDOR_ID

Hex Encoding 80000082

Data Type NCTYPE_UINT16

Permissions Set

Description Vendor ID of the device as reported in the Vendor ID attribute of
device’s Identity Object. This attribute is used to verify that the device
is the same one expected by your application. If the Vendor ID does
not match, NI-DNET returns the NC_ERR_DEVICE_INIT error with a
qualifier of NC_QUAL_DEVI_VENDOR.

The Vendor ID is a number assigned to the device vendor by the Open
Device Vendor’s Association (ODVA).

If you do not call ncSetDriverAttr to set the Vendor ID, a default
value of zero is used. When Vendor ID is zero, NI-DNET does not
verify the device’s Vendor ID.

Chapter 3 NI-DNET Objects — Interface Object

NI-DNET Programmer Reference Manual 3-6 © National Instruments Corporation

Interface Object

Description
The Interface Object represents a DeviceNet interface (physical DeviceNet port on an AT,
PCI, PXI, or PCMCIA board). Since this interface acts as a device on the DeviceNet network
much like any other device, it is configured with its own MAC ID and baud rate.

The Interface Object is used to:

• Configure NI-DNET settings that apply to the entire interface.

• Start and stop communication for all NI-DNET objects associated with the interface.

The Interface Object must be the first NI-DNET object opened by your application, and thus
the ncOpenDnetIntf function must be the first NI-DNET function called by your
application.

Functions

Function Name Function Description

DeviceNet Error Handler Convert status returned from an NI-DNET function
into a descriptive string (LabVIEW only)

ncCloseObject Close an NI-DNET object

ncGetDriverAttr Get the value of an attribute in the NI-DNET driver

ncOpenDnetIntf Configure and open an NI-DNET Interface Object

ncOperateDnetIntf Perform an operation on an NI-DNET Interface
Object

ncSetDriverAttr Set the value of an attribute in the NI-DNET driver

ncStatusToString Convert status returned from an NI-DNET function
into a descriptive string (C only)

Chapter 3 NI-DNET Objects — Interface Object

© National Instruments Corporation 3-7 NI-DNET Programmer Reference Manual

Driver Attributes
Baud Rate

Interface Protocol Version

Interface Software Version

Attribute ID NC_ATTR_BAUD_RATE

Hex Encoding 80000007

Data Type NCTYPE_BAUD_RATE

Permissions Get

Description This driver attribute allows you to get the BaudRate originally passed
into ncOpenDnetIntf .

Attribute ID NC_ATTR_PROTOCOL_VERSION

Hex Encoding 80000002

Data Type NCTYPE_VERSION

Permissions Get

Description This driver attribute reports the version of the DeviceNet Specification
to which the NI-DNET software conforms. This version is at least
02000000 hex (version 2.0).

Attribute ID NC_ATTR_SOFTWARE_VERSION

Hex Encoding 80000003

Data Type NCTYPE_VERSION

Permissions Get

Description This driver attribute reports the version of the NI-DNET software.
This version is at least 01000000 hex (version 1.0).

Chapter 3 NI-DNET Objects — Interface Object

NI-DNET Programmer Reference Manual 3-8 © National Instruments Corporation

Mac Id

Poll Mode

Attribute ID NC_ATTR_MAC_ID

Hex Encoding 80000080

Data Type NCTYPE_UINT8

Permissions Get

Description This driver attribute allows you to get the IntfMacId originally
passed into ncOpenDnetIntf .

Attribute ID NC_ATTR_POLL_MODE

Hex Encoding 8000009B

Data Type NCTYPE_POLL_MODE

Permissions Get

Description This driver attribute allows you to get the PollMode originally passed
into ncOpenDnetIntf .

Chapter 3 NI-DNET Objects — I/O Object

© National Instruments Corporation 3-9 NI-DNET Programmer Reference Manual

I/O Object

Description
The I/O Object represents an I/O connection to a remote DeviceNet device (physical device
attached to your interface by a DeviceNet cable). The I/O Object usually represents
I/O communication as a master with a remote slave device. If your computer is being used as
the primary controller of your DeviceNet devices, you should configure I/O communication
as a master.

You can also configure the I/O Object for I/O communication as a slave with a remote master.
If your computer is being used as a peripheral device for another primary controller, you can
configure I/O communication as a slave. This is done by setting the I/O Object’s
DeviceMacId to the same MAC ID as the Interface Object (IntfMacId parameter of
ncOpenDnetIntf).

The I/O Object supports as many master/slave I/O connections as currently allowed by the
DeviceNet Specification (version 2.0). This means that you can use polled, strobed, and
COS/cyclic I/O connections simultaneously for a given device. As specified by the DeviceNet
Specification, only one master/slave I/O connection of a given type can be used for each
device (MAC ID). For example, you cannot open two polled I/O connections for the same
device.

The I/O Object is used to:

• Read data from the most recent message received on the I/O connection
(ncReadDnetIO).

• Write data for the next message produced on the I/O connection (ncWriteDnetIO).

Functions

Function Name Function Description

DeviceNet Error Handler Convert status returned from an NI-DNET function
into a descriptive string (LabVIEW only)

ncCloseObject Close an NI-DNET object

ncConvertForDnetWrite Convert an appropriate LabVIEW data type for
writing data bytes on the DeviceNet network

ncConvertFromDnetRead Convert data read from the DeviceNet network into an
appropriate LabVIEW data type

ncCreateNotification Create a notification callback for an object (C only)

Chapter 3 NI-DNET Objects — I/O Object

NI-DNET Programmer Reference Manual 3-10 © National Instruments Corporation

ncCreateOccurrence Create a notification occurrence for an object
(LabVIEW only)

ncGetDriverAttr Get the value of an attribute in the NI-DNET driver

ncOpenDnetIO Configure and open an NI-DNET I/O Object

ncReadDnetIO Read input data from an I/O Object

ncSetDriverAttr Set the value of an attribute in the NI-DNET driver

ncStatusToString Convert status returned from an NI-DNET function
into a descriptive string (C only)

ncWaitForState Wait for one or more states to occur in an object

ncWriteDnetIO Write output data to an I/O Object

Functions (Continued)

Function Name Function Description

Chapter 3 NI-DNET Objects — I/O Object

© National Instruments Corporation 3-11 NI-DNET Programmer Reference Manual

Driver Attributes
Ack Suppress

Attribute ID NC_ATTR_ACK_SUPPRESS

Hex Encoding 8000009A

Data Type NCTYPE_BOOL

Permissions Set

Description This driver attribute applies only to Change-of-State (COS) or Cyclic
I/O connections (ConnectionType of COS or Cyclic). It determines
whether acknowledgments are used (false) or suppressed (true).
Acknowledgments are used with COS or cyclic I/O connections to
verify that produced data is received successfully.

When InputLength is nonzero, the acknowledgment is produced by
NI-DNET. When OutputLength is nonzero, the acknowledgment is
consumed by NI-DNET.

If you do not call ncSetDriverAttr to set Ack Suppress , a default
value of false is used.

When successful device operation can be verified by other means,
COS or cyclic acknowledgment can often be suppressed. For
example, if you open a polled I/O connection in addition to the COS
or cyclic I/O connection, you can set Ack Suppress to true.

If the ConnectionType of this I/O object is Poll or Strobe , the
Ack Suppress attribute is ignored.

Chapter 3 NI-DNET Objects — I/O Object

NI-DNET Programmer Reference Manual 3-12 © National Instruments Corporation

Current State

Device Type

Attribute ID NC_ATTR_STATE

Hex Encoding 80000009

Data Type NCTYPE_STATE

Permissions Get

Description Current state of the NI-DNET object. This driver attribute provides
the current Read Avail , Established , and Error states as
described in the ncWaitForState function. Use the
ncGetDriverAttr function when you need to determine the current
state of an object but you do not need to wait for a specific state. For
example, if you want to determine whether an error has occurred, you
can get the Current State attribute to check the Error state. Since
reporting of errors is handled automatically by read and write
functions, using ncGetDriverAttr to check for such errors is
typically done only if the read and write functions are not used often.

Attribute ID NC_ATTR_DEVICE_TYPE

Hex Encoding 80000084

Data Type NCTYPE_UINT16

Permissions Set

Description Device Type of the device as reported in the Device Type attribute of
device’s Identity Object. This attribute is used to verify that the device
is the same one expected by your application. If the Device Type does
not match, NI-DNET returns the NC_ERR_DEVICE_INIT error with a
qualifier of NC_QUAL_DEVI_DEVTYPE.

The Device Type indicates conformance to a specific device profile,
such as Photoelectric Sensor or Position Controller.

If you do not call ncSetDriverAttr to set the Device Type, a default
value of zero is used. When Device Type is zero, NI-DNET does not
verify the device’s Device Type.

Chapter 3 NI-DNET Objects — I/O Object

© National Instruments Corporation 3-13 NI-DNET Programmer Reference Manual

Exp Packet Rate

Inhibit Timer

Attribute ID NC_ATTR_EXP_PACKET_RATE

Hex Encoding 80000095

Data Type NCTYPE_DURATION

Permissions Get

Description This driver attribute allows you to get the ExpPacketRate originally
passed into ncOpenDnetIO .

Attribute ID NC_ATTR_EXP_INHIBIT_TIMER

Hex Encoding 80000097

Data Type NCTYPE_DURATION

Permissions Set

Description This driver attribute applies only to COS I/O connections
(ncOpenDnetIO with ConnectionType of COS). This driver
attribute configures the minimum delay time between subsequent data
productions. This attribute can be used to limit the amount of network
traffic used for COS messages from devices with frequently
changing I/O.

The default value for Inhibit Timer is zero, as specified in the
DeviceNet Specification. Since this default is appropriate for most
applications, the Inhibit Timer attribute is not included in the
configuration attributes provided with ncOpenDnetIO . If you want to
change the default Inhibit Timer , call ncSetDriverAttr prior to
starting communication.

If ConnectionType is Poll , Strobe , or Cyclic , the
Inhibit Timer attribute is ignored. For these I/O connection types,
the frequency of data production is controlled entirely by the

ExpPacketRate attribute.

Chapter 3 NI-DNET Objects — I/O Object

NI-DNET Programmer Reference Manual 3-14 © National Instruments Corporation

Input Length

Mac Id

Output Length

Attribute ID NC_ATTR_IN_LEN

Hex Encoding 80000091

Data Type NCTYPE_UINT32

Permissions Get

Description This driver attribute allows you to get the InputLength originally
passed into ncOpenDnetIO .

Attribute ID NC_ATTR_MAC_ID

Hex Encoding 80000080

Data Type NCTYPE_UINT8

Permissions Get

Description This driver attribute allows you to get the DeviceMacId originally
passed into ncOpenDnetIO .

Attribute ID NC_ATTR_OUT_LEN

Hex Encoding 80000092

Data Type NCTYPE_UINT32

Permissions Get

Description This driver attribute allows you to get the OutputLength originally
passed into ncOpenDnetIO .

Chapter 3 NI-DNET Objects — I/O Object

© National Instruments Corporation 3-15 NI-DNET Programmer Reference Manual

Product Code

Vendor Id

Attribute ID NC_ATTR_PRODUCT_CODE

Hex Encoding 80000083

Data Type NCTYPE_UINT16

Permissions Set

Description Product Code of the device as reported in the Product Code attribute
of device’s Identity Object. This attribute is used to verify that the
device is the same one expected by your application. If the Product
Code does not match, NI-DNET returns the NC_ERR_DEVICE_INIT
error with a qualifier of NC_QUAL_DEVI_PRODCODE.

The Product Code is a vendor-specific value which identifies a
particular product within a device type.

If you do not call ncSetDriverAttr to set the Product Code, a
default value of zero is used. When Product Code is zero, NI-DNET
does not verify the device’s Product Code.

Attribute ID NC_ATTR_VENDOR_ID

Hex Encoding 80000082

Data Type NCTYPE_UINT16

Permissions Set

Description Vendor ID of the device as reported in the Vendor ID attribute of
device’s Identity Object. This attribute is used to verify that the device
is the same one expected by your application. If the Vendor ID does
not match, NI-DNET returns the NC_ERR_DEVICE_INIT error with a
qualifier of NC_QUAL_DEVI_VENDOR.

The Vendor ID is a number assigned to the device vendor by the Open
Device Vendor’s Association (ODVA).

If you do not call ncSetDriverAttr to set the Vendor ID, a default
value of zero is used. When Vendor ID is zero, NI-DNET does not
verify the device’s Vendor ID.

© National Instruments Corporation A-1 NI-DNET Programmer Reference Manual

A
Status Handling and Error Codes

This appendix describes how to handle NI-DNET status in your applications and the encoding
of NI-DNET status values.

Each NI-DNET function returns a value that indicates the status of the function call. Your
application should check this status after each NI-DNET function call.

Handling Status in G (LabVIEW/BridgeVIEW)

Checking Status
For applications written in G (LabVIEW/BridgeVIEW), status checking is handled
automatically. For all NI-DNET functions, the lower left and right terminals provide status
information using LabVIEW Error Clusters. LabVIEW Error Clusters are designed so that
status information flows from one function to the next, and function execution stops when an
error occurs. For more information, refer to the Error Handling section in the LabVIEW
Online Reference.

Within your LabVIEW block diagram, you wire the Error in and Error out terminals of
NI-DNET functions together in succession. When an error is detected in an NI-DNET
function (status field true), all NI-DNET functions wired together are skipped except for
ncCloseObject . The ncCloseObject function executes regardless of whether an error
occurred, thus ensuring that all NI-DNET objects are closed properly when execution stops
due to an error. Depending on how you want to handle errors, you can wire the Error in and
Error out terminals together per-object (group a single open/close pair), per-device (group
together Explicit Messaging and I/O Objects for a given device), or per-network (group all
functions for a given interface).

The DeviceNet Error Handler function converts an NI-DNET Error Cluster into a
descriptive string. By displaying this string when an error or warning is detected, you can
avoid interpretation of individual fields of the Error Cluster to debug the problem. The
Error in terminal of this function is normally wired from the Error out terminal of an
ncCloseObject function.

To display an NI-DNET Error Cluster description without interrupting execution of other
code, you normally wire the Error out and Error String output terminals of the
DeviceNet Error Handler to front panel indicators. If you want to interrupt execution

Appendix A Status Handling and Error Codes

NI-DNET Programmer Reference Manual A-2 © National Instruments Corporation

and display a dialog box describing the error, set Show Error Dialog to true instead of
using front panel indicators.

Figure A-1 shows the Error Cluster of the ncCloseObject function wired into the
DeviceNet Error Handler function. Instead of showing the dialog box when an error
occurs, this diagram displays the error description using a front panel indicator.

Figure A-1. NI-DNET Error Cluster Example

Status Format
When you use the DeviceNet Error Handler function in your diagram, a description of
the error is displayed either in a dialog box or on your front panel (assuming you wire
Error String to an indicator). When you display the error string generated by

DeviceNet Error Handler , you do not need to interpret the individual fields of the
NI-DNET Error Cluster.

In the NI-DNET implementation of Error Clusters, each field has the following meaning:

Status
This boolean field is set to true when an error occurs and remains false when a warning or
success occurs. An error occurs when a function does not perform the expected behavior.
A warning occurs when the function performed as expected but a condition exists which may
require your attention. Success indicates that the function performed normally.

Appendix A Status Handling and Error Codes

© National Instruments Corporation A-3 NI-DNET Programmer Reference Manual

Code
The 32 bits of the code field have the following format (see Figure A-2).

Figure A-2. Error Cluster Code Field

The lower 16 bits indicate the primary status code used for warnings or errors. For example,
if NI-DNET cannot initialize communication with a device, the code NC_ERR_DEVICE_INIT
is returned. If no warning or error exists, the Error Cluster’s code field has the value zero.

The upper 16 bits indicate a qualifier for the primary NI-DNET warning or error code. This
NI-DNET qualifier is specific to individual values for the NI-DNET code and provides
additional information useful for detailed debugging. For example, if the status code is
NC_ERR_DEVICE_INIT, the qualifier indicates the exact cause of the initialization problem.
If no qualifier exists, the NI-DNET qualifier field has the value zero.

Source
When an error or warning occurs, the source field (a string) of the Error Cluster provides the
complete VI hierarchy for the NI-DNET function in which the error or warning occurred. If
no error or warning occurs in your application, source remains blank.

The first line in source displays the NI-DNET function in which the error or warning
occurred. The next line displays the name of the VI that called the NI-DNET function.
Subsequent lines display the next highest VI in the call chain, up to the main VI for your
application.

Handling Status in C

Checking Status
Each C language NI-DNET function returns a value that indicates the status of the function
call. This status value is zero for success, greater than zero for a warning, and less than zero
for an error.

After every call to an NI-DNET function, your program should check to see if the return status
is nonzero. If so, call the ncStatusToString function to obtain an ASCII string which

31–16 15–0

NI-DNET
Qualifier

NI-DNET
Code

Appendix A Status Handling and Error Codes

NI-DNET Programmer Reference Manual A-4 © National Instruments Corporation

describes the error/warning. You can then display this ASCII string using standard C
functions such as printf .

The following text shows C source code for handling the status returned from the
ncCloseObject function. If an error or warning is detected, call ncStatusToString to
obtain an error description.

NCTYPE_STATUS status;

char string[80];

. . .

status = ncCloseObject(objh);

if (status != NC_SUCCESS) {

ncStatusToString(status, sizeof(string), string);

printf("ncCloseObject: %s\n", string);

. . .

}

. . .

When accessing the NI-DNET code and qualifier within your application, you should use the
constants defined in NIDNET.H. These constants use the same names as described later in this
appendix. For example, to check for a timeout after calling ncWaitForState , you would
write C code like:

if (NC_STATCODE(status) == NC_ERR_TIMEOUT) {

YourCodeToHandleTimeout();

}

Status Format
When you use the ncStatusToString function in your C source code, you can always
obtain a complete description of the error, and you do not need to interpret the individual
fields of the NI-DNET status.

To provide the maximum amount of information, the status returned by NI-DNET functions
is encoded as a signed 32-bit integer. The format of this integer is shown in Figure A-3.

Appendix A Status Handling and Error Codes

© National Instruments Corporation A-5 NI-DNET Programmer Reference Manual

Figure A-3. Status Format in C

Error/Warning Indicators (Severity)
The error and warning bits ensure that all NI-DNET errors generate a negative status and all
NI-DNET warnings generate a positive status. The error bit is set when a function does not
perform the expected behavior, resulting in a negative status. The warning bit is set when the
function performed as expected but a condition exists that may require your attention. If no
error or warning occurs, the entire status is set to zero to indicate success. Table A-1
summarizes the behavior of NI-DNET status.

Code
The code bits indicate the primary status code used for warning or errors. For example, if
NI-DNET cannot initialize communication with a device, the code NC_ERR_DEVICE_INIT
is returned. If no warning or error exists, this field has the value zero.

Qualifier
The qualifier bits hold a qualifier for the warning or error code. It is specific to individual
values for the code field and provides additional information useful for detailed debugging.
For example, if the status code is NC_ERR_DEVICE_INIT, the qualifier indicates the exact
cause of the initialization problem. If no qualifier exists, this field has the value zero.

Table A-1. Determining Severity of Status

Status Result

Negative Error. Function did not perform expected behavior.

Zero Success. Function completed successfully.

Positive Warning. Function performed as expected, but a condition
arose that may require your attention.

31 30 29–16 15–0

Error Warning Qualifier Code

Appendix A Status Handling and Error Codes

NI-DNET Programmer Reference Manual A-6 © National Instruments Corporation

NI-DNET Status Codes and Qualifiers
Table A-2 summarizes each NI-DNET status code (lower 16 bits). After the table, a separate
section for each status code lists the valid encodings for the entire status, including the
associated qualifier and severity. Each section also provides possible solutions to the problem.

Table A-2. Summary of Status Codes

Code
Hex Encoding of

Code (Lower 16 Bits) Description

NC_SUCCESS 0000 Success (no warning or error)

NC_ERR_TIMEOUT 0001 A timeout expired

NC_ERR_DRIVER 0002 Implementation-specific error in the
NI-DNET driver

NC_ERR_BAD_PARAM 0004 Invalid function parameter

NC_ERR_NOT_STOPPED 0007 Attempted to set a driver attribute while
communicating

NC_ERR_OLD_DATA 0009 Data returned from ncReadDnetIO
matches data returned from previous call
to ncReadDnetIO

NC_ERR_DEVICE_INIT 0010 Problem initializing a remote DeviceNet
device for communication

NC_ERR_NOT_SUPPORTED 000A A known NI-DNET feature is not
supported

NC_ERR_CAN_COMM 000B Error or warning indicating CAN
communication errors

NC_ERR_NOT_STARTED 000C You attempted to perform an operation
which is only allowed when
communicating

NC_ERR_RSRC_LIMITS 000D Configuration specified by application
exceeds NI-DNET resource limits

NC_ERR_READ_NOT_AVAIL 000E Call to ncReadDnetExplMsg was made
prior to receiving a valid explicit
message response

NC_ERR_BAD_NET_ID 000F Interface Object’s MAC ID conflicts
with another DeviceNet device

Appendix A Status Handling and Error Codes

© National Instruments Corporation A-7 NI-DNET Programmer Reference Manual

NC_SUCCESS (0000 Hex)
Success (no warning or error).

Hex Status Encoding 00000000

NC_ERR_TIMEOUT (0001 Hex)
A timeout expired. The qualifier indicates the type of timeout that expired.

Hex Status Encoding 80000001

NC_ERR_DEVICE_MISSING 0011 Remote DeviceNet device is missing
from your network

NC_ERR_FRAGMENTATION 0012 Fragment received out of sequence

NC_ERR_DNET_ERR_RESP 0014 Error response received from remote
DeviceNet device

Qualifier 0

Severity Success

Description The qualifier is always zero.

Qualifier NC_QUAL_TIMO_FUNCTION (0)

Severity Error

Description The timeout of ncGetDnetAttribute , ncSetDnetAttribute ,
ncWaitForState , or ncCreateNotification expired before any
desired states occurred.

Solutions • Increase the value of the Timeout parameter to wait longer.

• If the timeout occurs while waiting for the Read Avail state
(NC_ST_READ_AVAIL) or Established state
(NC_ST_ESTABLISHED), verify your DeviceNet cable
connections and ensure that remote devices are operating
properly.

• If you wait only for the Error state (NC_ST_ERROR), the timeout
is often the expected behavior and you can ignore it.

Table A-2. Summary of Status Codes (Continued)

Code
Hex Encoding of

Code (Lower 16 Bits) Description

Appendix A Status Handling and Error Codes

NI-DNET Programmer Reference Manual A-8 © National Instruments Corporation

Hex Status Encoding 80020001

NC_ERR_DRIVER (0002 Hex)
An implementation-specific error occurred in the NI-DNET driver, such as the inability to
allocate needed memory. This error should never occur under normal circumstances.

Hex Status Encoding 8xxx0002, 9xxx0002, Axxx0002,
and Bxxx0002

Qualifier NC_QUAL_TIMO_CONNECTION (2)

Severity Error

Description Although a connection was successfully established with the remote
DeviceNet device, that connection timed out. This error occurs when
the device does not respond (or acknowledge) messages sent by
NI-DNET.

Solutions • Increase the value used for the ExpPacketRate parameter of
ncOpenDnetIO .

• Verify that the device still exists at the configured MAC ID by
running the SimpleWho utility described in the NI-DNET User
Manual.

• Verify that your DeviceNet cabling is correct.

• Verify that your device can accept back-to-back DeviceNet
messages. If DeviceNet messages can be lost in the device when
NI-DNET transmits messages at a fast rate, your device may not
respond properly.

• Contact National Instruments with information on the failing
device. National Instruments technical support may be able to
work around its loss of messages.

Qualifier Varies

Severity Error

Description The qualifier holds a value that is specific to the NI-DNET driver
implementation. This qualifier is encoded in bits 16-29 (xxx in the
listing above).

Solution Write down the status value, and contact National Instruments for
technical support.

Appendix A Status Handling and Error Codes

© National Instruments Corporation A-9 NI-DNET Programmer Reference Manual

NC_ERR_BAD_PARAM (0004 Hex)
One or more function parameters is invalid.

Hex Status Encoding 80000004

Hex Status Encoding 80010004

Hex Status Encoding 80020004

Qualifier 0

Severity Error

Description A function parameter is invalid.

Solution Read the function description in Chapter 2, NI-DNET Functions, to
determine valid values for each parameter.

Qualifier 1

Severity Error

Description Although the parameters for each function call are valid, the total of
all parameters passed to open functions result in an invalid system
configuration.

Solution This error occurs if you use more than two different values for
ExpPacketRate with the PollMode parameter Scanned .

Qualifier 2

Severity Error

Description The IntfName parameter of ncOpenDnetIntf ,
ncOpenDnetExplMsg , or ncOpenDnetIO is invalid.

Solutions • Verify that the syntax of your IntfName is DNETx , where x is a
number from 0 to 9.

• Run the NI-DNET Hardware Configuration utility to verify that
your IntfName is assigned to National Instruments DeviceNet
hardware.

Appendix A Status Handling and Error Codes

NI-DNET Programmer Reference Manual A-10 © National Instruments Corporation

NC_ERR_NOT_STOPPED (0007 Hex)
You attempted to set an NI-DNET driver attribute while communicating. You can call
ncSetDriverAttr only prior to calling ncOperateDnetIntf to start communication.

Hex Status Encoding 80000007

NC_ERR_OLD_DATA (0009 Hex)
The data returned from ncReadDnetIO matches the data returned from the previous call to
ncReadDnetIO . Because the old data is returned successfully, this status code has a warning
severity, not error.

Hex Status Encoding 40000009

Qualifier 0

Severity Error

Description The qualifier is always zero.

Solution Do not call ncOperateDnetIntf to start communication until you
have completed all calls to ncSetDriverAttr .

Qualifier 0

Severity Warning

Description The qualifier is always zero.

Solutions • If you only want to read the most recent data, ignore this warning.

• Wait for the NC_ST_READ_AVAIL state before calling
ncReadDnetIO .

Appendix A Status Handling and Error Codes

© National Instruments Corporation A-11 NI-DNET Programmer Reference Manual

NC_ERR_DEVICE_INIT (0010 Hex)
This error indicates a problem in initialization of a remote DeviceNet device when preparing
it for communication with NI-DNET.

Hex Status Encoding 80000010

Hex Status Encoding 80010010

Qualifier NC_QUAL_DEVI_OTHER (0)

Severity Error

Description Miscellaneous device initialization error.

Solution Verify that the configuration specified in ncOpenDnetExplMsg ,
ncOpenDnetIO , or ncSetDriverAttr matches the capabilities of
your device.

Qualifier NC_QUAL_DEVI_IO_CONN (1)

Severity Error

Description Device does not support the ConnectionType passed into
ncOpenDnetIO . For example, if the device only supports strobed I/O
and you configure polled I/O, this error is returned.

Solutions • By referring to the documentation for your DeviceNet device or
by running the SimpleWho utility described in the NI-DNET User
Manual, determine the I/O connection types supported.

• Once you determine a valid I/O connection type, use that
ConnectionType with ncOpenDnetIO .

Appendix A Status Handling and Error Codes

NI-DNET Programmer Reference Manual A-12 © National Instruments Corporation

Hex Status Encoding 80020010

Hex Status Encoding 80030010

Qualifier NC_QUAL_DEVI_IN_LEN (2)

Severity Error

Description Device does not support the InputLength passed into
ncOpenDnetIO . This InputLength must match the
produced_connection_size attribute within the device’s internal
I/O Connection Object (except for strobed, see Solutions below).

Solutions • For a strobed I/O connection which communicates as a slave
(DeviceMacId equals IntfMacId), InputLength must be 1.
The boolean input is obtained from the 8 byte strobe command
message and is returned as a single input byte to your application.

• By referring to the documentation for your DeviceNet device or
by running the SimpleWho utility described in the NI-DNET User
Manual, determine the produced_connection_size for the
I/O Connection. Use that value as InputLength with
ncOpenDnetIO .

Qualifier NC_QUAL_DEVI_OUT_LEN (3)

Severity Error

Description Device does not support the OutputLength passed into
ncOpenDnetIO . This OutputLength must match the
consumed_connection_size attribute within the device’s internal
I/O Connection Object (except for strobed, see Solutions below).

Solutions • For a strobed I/O connection which communicates as a slave
(DeviceMacId equals IntfMacId). OutputLength must be 1.
The boolean output byte is used to determine the device’s output
bit within the 8 byte strobe command message.

• By referring to the documentation for your DeviceNet device or
by running the SimpleWho utility described in the NI-DNET User
Manual, determine the consumed_connection_size for the
I/O connection. Use that value as the OutputLength with
ncOpenDnetIO .

Appendix A Status Handling and Error Codes

© National Instruments Corporation A-13 NI-DNET Programmer Reference Manual

Hex Status Encoding 80040010

Hex Status Encoding 80050010

Qualifier NC_QUAL_DEVI_EPR (4)

Severity Error

Description Device does not support the ExpPacketRate passed into
ncOpenDnetIO .

Solutions • If you set ExpPacketRate as a relatively small value, try
increasing it. Some devices have a lower limit for their
communications rate, often determined by hardware limitations.

• If you set ExpPacketRate as a relatively large value, try
decreasing it. Some devices have an upper limit for internal
timers.

• For more information on I/O Connection rates, refer to the
Configuring I/O Connections section in Chapter 3, NI-DNET
Programming Techniques, of the NI-DNET User Manual.

Qualifier NC_QUAL_DEVI_VENDOR (5)

Severity Error

Description The vendor ID reported by the device (in the Vendor ID of its internal
Identity Object) differs from the Vendor Id driver attribute
(NC_ATTR_VENDOR_ID).

Solutions • If you have knowingly replaced a previously used device with one
from another vendor, use the new device’s Vendor ID with
ncSetDriverAttr .

• If you are unaware of a device replacement, run the SimpleWho

utility described in the NI-DNET User Manual, and determine
which device now exists at the MAC ID.

• If you no longer want to verify the device’s Vendor ID, remove the
call to ncSetDriverAttr for the Vendor Id driver attribute.

Appendix A Status Handling and Error Codes

NI-DNET Programmer Reference Manual A-14 © National Instruments Corporation

Hex Status Encoding 80060010

Hex Status Encoding 80070010

Qualifier NC_QUAL_DEVI_DEVTYPE (6)

Severity Error

Description The device type reported by the device (in the Device Type of its
internal Identity Object) differs from the Device Type driver attribute
(NC_ATTR_DEVICE_TYPE).

Solutions • If you have knowingly replaced a previously used device with one
of a different type (device profile), use the new device’s type with
ncSetDriverAttr .

• If you are unaware of a device replacement, run the SimpleWho
utility described in the NI-DNET User Manual, and determine
which device now exists at the MAC ID.

• If you no longer want to verify the device’s type, remove the call
to ncSetDriverAttr for the Device Type driver attribute.

Qualifier NC_QUAL_DEVI_PRODCODE (7)

Severity Error

Description The product code reported by the device (in the Product Code of its
internal Identity Object) differs from the Product Code driver attribute
(NC_ATTR_PRODUCT_CODE).

Solutions • If you have knowingly replaced a previously used device with one
of a different product code, use the new device’s product code with
ncSetDriverAttr .

• If you are unaware of a device replacement, run the SimpleWho

utility described in the NI-DNET User Manual, and determine
which device now exists at the MAC ID.

• If you no longer want to verify the device’s product code, remove
the call to ncSetDriverAttr for the Product Code driver
attribute.

Appendix A Status Handling and Error Codes

© National Instruments Corporation A-15 NI-DNET Programmer Reference Manual

NC_ERR_NOT_SUPPORTED (000A Hex)
This error indicates that a known NI-DNET feature is not supported.

Hex Status Encoding 8000000A

NC_ERR_CAN_COMM (000B Hex)
CAN (Controller Area Network) is the low-level protocol used for DeviceNet
communications. This error or warning indicates problems with CAN communication, such
as bad cabling.

Hex Status Encoding 4000000B

Qualifier 0

Severity Error

Description A known feature is not supported.

Solutions • For the given function, object, and parameters used, refer to the
descriptions in this manual to determine which feature is
unsupported.

• This error is returned if you call a read or write function for an
Interface Object.

Qualifier 0

Severity Warning

Description A warning indicates that CAN communication problems have been
detected but communication is still proceeding. This warning
corresponds to the Error Passive state referred to in the CAN
Specification.

Solutions • The most common cause of this warning is an attempt to transmit
a CAN message without another CAN device connected. Connect
your other DeviceNet devices prior to starting communication.

• Another common cause of this problem is insufficient power on
the DeviceNet bus. Verify that your power supply meets
DeviceNet requirements and that your devices do not draw too
much of that power.

• Verify that your DeviceNet cabling is correct. For example, make
sure that you wired your Combicon connector correctly on the
DeviceNet board.

Appendix A Status Handling and Error Codes

NI-DNET Programmer Reference Manual A-16 © National Instruments Corporation

Hex Status Encoding 8000000B
Qualifier 0

Severity Error

Description An error indicates that CAN communication problems caused all
communication to stop. This error corresponds to the Bus Off state
referred to in the CAN Specification.

Solutions • The most common cause of this warning is an attempt to transmit
a CAN message without another CAN device connected. Connect
your other DeviceNet devices prior to starting communication.

• Another common cause of this problem is insufficient power on
the DeviceNet bus. Verify that your power supply meets
DeviceNet requirements and that your devices do not draw too
much of that power.

• Verify that your DeviceNet cabling is correct. For example, make
sure that you wired your Combicon connector correctly on the
DeviceNet board.

Appendix A Status Handling and Error Codes

© National Instruments Corporation A-17 NI-DNET Programmer Reference Manual

NC_ERR_NOT_STARTED (000C Hex)
This error is returned when you attempt to perform an operation which is allowed only when
communicating.

Hex Status Encoding 8000000C

NC_ERR_RSRC_LIMITS (000D Hex)
The configuration specified by your application has exceeded internal NI-DNET resource
limits. NI-DNET resources include the shared memory window between the host PC and
board, which is the underlying transport between your application and the DeviceNet protocol
implementation.

Hex Status Encoding 8002000D

Qualifier 0

Severity Error

Description Communication must be started prior to the operation performed.

Solutions • Perform the operation after you call ncOperateDnetIntf to
start communication.

• Do not perform the operation after you call
ncOperateDnetIntf to stop communication.

• This error is returned when you call ncGetDnetAttribute ,
ncSetDnetAttribute , or ncWriteDnetExlpMsg (send
explicit message request) without first waiting for the
Established state.

• This error can occur after the NC_ERR_CAN_COMM error is
detected, since the CAN communication error automatically stops
all communication.

Qualifier NC_QUAL_RSRC_IO_LEN (2)

Severity Error

Description Total shared memory space for I/O connections has been exceeded.

Solutions • Reduce the number of devices or I/O connections used.

• Reduce the InputLength or OutputLength used for a given
I/O Object. The largest input/output length supported is 256 bytes.

Appendix A Status Handling and Error Codes

NI-DNET Programmer Reference Manual A-18 © National Instruments Corporation

Hex Status Encoding 8004000D

NC_ERR_READ_NOT_AVAIL (000E Hex)
A call to ncReadDnetExplMsg was made prior to receiving a valid explicit message
response.

Hex Status Encoding 8000000E

Qualifier NC_QUAL_RSRC_READ_SRV (4)

Severity Error

Description Memory space allocated for consumed explicit message responses has
been exceeded. This memory is limited to 100 service data bytes.
When a larger response is received, it is discarded by NI-DNET. This
error is usually returned by ncReadDnetExplMsg .

Solutions • For a DeviceNet master to communicate successfully with the
remote device, change its configuration so that it returns smaller
responses.

• If you cannot reduce the device’s response length, please contact
National Instruments to inform us about the device.

Qualifier 0

Severity Error

Description The ncReadDnetExplMsg function was called prior to receiving a
valid explicit message response.

Solutions • A call to ncReadDnetExplMsg only makes sense after sending a
service request using ncWriteDnetExplMsg . Make sure to call
ncWriteDnetExplMsg prior to ncReadDnetExplMsg .

• You should wait for the service response to be available prior to
calling ncReadDnetExplMsg . This is done using
ncWaitForState with DesiredState of
NC_ST_READ_AVAIL.

Appendix A Status Handling and Error Codes

© National Instruments Corporation A-19 NI-DNET Programmer Reference Manual

NC_ERR_BAD_NET_ID (000F Hex)
When communication starts, the Interface Object verifies that its MAC ID (IntfMacId
parameter of ncOpenDnetIntf) does not conflict with any other DeviceNet device. This
verification is done using the Duplicate MAC ID Check sequence defined by the DeviceNet
Specification. This error is returned when a MAC ID conflict is detected.

Hex Status Encoding 8000000F
Qualifier 0

Severity Error

Description Interface Object’s MAC ID conflicts with another DeviceNet device.

Solution Determine an unused MAC ID in your DeviceNet system, and use that
MAC ID for the IntfMacId parameter of ncOpenDnetIntf . The
SimpleWho utility can be used to determine unused MAC IDs (see the
NI-DNET User Manual.)

Appendix A Status Handling and Error Codes

NI-DNET Programmer Reference Manual A-20 © National Instruments Corporation

NC_ERR_DEVICE_MISSING (0011 Hex)
This error indicates that the DeviceNet device specified by DeviceMacId of ncOpenDnetIO
or ncOpenDnetExplMsg is missing from your network. It results from a failure to establish
an initial connection with the device.

Hex Status Encoding 80000011

NC_ERR_FRAGMENTATION (0012 Hex)
Fragmentation refers to the protocol by which a DeviceNet device breaks a large message into
smaller fragments for network transmission. This error occurs when fragments are received
out of sequence (such as the second fragment arriving before the first).

Hex Status Encoding 80000012

Qualifier 0

Severity Error

Description After starting communication, a connection could not be established
with the remote DeviceNet device.

Solutions • This error occurs when the DeviceMacId parameter of
ncOpenDnetIO or ncOpenDnetExplMsg is incorrect. To verify
that the device exists at the configured MAC ID, run the
SimpleWho utility described in the NI-DNET User Manual.

• Verify that your DeviceNet cabling is correct.

Qualifier 0

Severity Error

Description Fragment received out of sequence.

Solutions • Verify that your DeviceNet cabling is correct.

• Contact National Instruments with information on the failing
device. National Instruments technical support may be able to
work around its fragmentation problems.

Appendix A Status Handling and Error Codes

© National Instruments Corporation A-21 NI-DNET Programmer Reference Manual

NC_ERR_DNET_ERR_RESP (0014 Hex)
This error is returned from ncGetDnetAttribute and ncSetDnetAttribute when an
error response is received from the remote DeviceNet device. This error response indicates
that the Get Attribute Single or Set Attribute Single service failed in the device, such as when
the attribute is not supported. The General Error Code and Additional Code returned in the
DeviceError parameter indicate the reason for the device’s failure.

Hex Status Encoding 80000014
Qualifier 0

Severity Error

Description The qualifier is always zero.

Solution For information on the encoding of DeviceError , refer to
ncGetDnetAttribute or ncSetDnetAttribute . Values for the
device’s error codes can be found in the DeviceNet Specification or in
the device vendor’s documentation.

© National Instruments Corporation B-1 NI-DNET Programmer Reference Manual

B
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form and
the configuration form, if your manual contains one, about your system configuration to answer your
questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to quickly
provide the information you need. Our electronic services include a bulletin board service, an FTP site,
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first try the
electronic support systems. If the information available on these systems does not answer your
questions, we offer fax and telephone support through our technical support centers, which are staffed
by applications engineers.

Electronic Services

Bulletin Board Support
National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files
and documents to answer most common customer questions. From these sites, you can also download
the latest instrument drivers, updates, and example programs. For recorded instructions on how to use
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. You can
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support
To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use
your Internet address, such as joesmith@anywhere.com , as your password. The support files and
documents are located in the /support directories.

NI-DNET Programmer Reference Manual B-2 © National Instruments Corporation

Fax-on-Demand Support
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access Fax-on-Demand from a touch-tone telephone at
512 418 1111.

E-Mail Support (Currently USA Only)
You can submit technical support questions to the applications engineering team through e-mail at the
Internet address listed below. Remember to include your name, address, and phone number so we can
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact
the source from which you purchased your software to obtain support.

Country Telephone Fax
Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 725 725 11 09 725 725 55
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
United Kingdom 01635 523545 01635 523154
United States 512 795 8248 512 794 5678

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and use
the completed copy of this form as a reference for your current configuration. Completing this form
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___) ________________Phone (___) __

Computer brand____________ Model ___________________Processor _____________________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter __________________________

Mouse ___yes ___no Other adapters installed_______________________________________

Hard disk capacity _____MB Brand___

Instruments used ___

National Instruments hardware product model _____________ Revision ____________________

Configuration ___

National Instruments software product ___________________ Version _____________________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem: ___

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: NI-DNET ™ Programmer Reference Manual

Edition Date: April 1998

Part Number: 321863A-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

E-Mail Address __

Phone (___) __________________________ Fax (___) _______________________________

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678
Austin, Texas 78730-5039

© National Instruments Corporation G-1 NI-DNET Programmer Reference Manual

Glossary

Prefix Meanings Value

m- milli- 10–3

k- kilo- 103

M- mega- 106

A

actuator A device that uses electrical, mechanical, or other signals to change
the value of an external, real-world variable. In the context of device
networks, actuators are devices that receive their primary data value from
over the network; examples include valves and motor starters. Also known
as final control element.

ANSI American National Standards Institute

Application
Programming Interface
(API)

A collection of functions used by a user application to access hardware.
Within NI-DNET, you use API functions to make calls into the NI-DNET
driver.

ASCII American Standard Code for Information Interchange

Assembly object Objects in DeviceNet devices which route I/O message contents to/from
individual attributes in the device.

attribute The externally visible qualities of an object; for example, an instance
square of class geometric shapes could have the attributes length of sides
and color, with the values 4 in. and blue. Also known as property.

automatic polling A polled I/O mode in which NI-DNET automatically determines an
appropriate scanned polling rate for your DeviceNet system.

Glossary

NI-DNET Programmer Reference Manual G-2 © National Instruments Corporation

B

b Bits.

background polling A polled I/O communication scheme in which all polled slaves are grouped
into two different communication rates: a foreground rate and a slower
background rate.

Bit strobed I/O Master/slave I/O connection in which the master broadcasts a single strobe
command to all strobed slaves then receives a strobe response from each
strobed salve.

C

CAN Controller Area Network.

Change-of-state I/O Master/slave I/O connection which is similar to cyclic I/O but data can be
sent when a change in the data is detected.

class A classification of things with similar qualities.

Common services Services defined by the DeviceNet specification such that they are largely
interoperable.

connection An association between two or more devices on a network that describes
when and how data is transferred.

controller A device that receives data from sensors and sends data to actuators in order
to hold one or more external, real-world variables at a certain level or
condition. A thermostat is a simple example of a controller.

COS I/O See change-of-state I/O.

Cyclic I/O Master/slave I/O connection in which the slave (or master) sends data at a
fixed interval.

D

device A physical assembly, linked to a communication line (cable), capable of
communicating across the network according to a protocol specification.

device network Multi-drop digital communication network for sensors, actuators, and
controllers.

Glossary

© National Instruments Corporation G-3 NI-DNET Programmer Reference Manual

Device profiles DeviceNet specifications which provide interoperability for devices of the
same type.

DeviceNet interface A physical DeviceNet port on an AT-CAN, PCI-CAN, PCMCIA-CAN, or
PXI-8461.

DLL Dynamic link library.

E

Expected packet rate The rate (in milliseconds) at which a DeviceNet connection is expected to
transfer its data.

Explicit messaging
connection

General-purpose connection used for executing services on a particular
object in a DeviceNet device.

F

FCC Federal Communications Commission.

H

hex Hexadecimal.

Hz Hertz.

I

Individual polling A polled I/O communication scheme in which each polled slave
communicates at its own individual rate.

instance A specific instance of a given class. For example, a blue square of 4 inches
per side would be one instance of the class Geometric Shapes.

I/O connection Connection used for exchange of physical input/output (sensor/activator)
data, as well as other control-oriented data.

ISO International Standards Organization.

Glossary

NI-DNET Programmer Reference Manual G-4 © National Instruments Corporation

K

KB Kilobytes of memory.

L

LabVIEW Laboratory Virtual Instrument Engineering Workbench.

local Within NI-DNET, anything that exists on the same host (personal
computer) as the NI-DNET driver.

M

MAC ID Media access control layer identifier. In DeviceNet, a device’s MAC ID
represents its address on the DeviceNet network.

Master/slave DeviceNet communication scheme in which a master device allocates
connections to one or more slave devices, and those slave devices can only
communicate with the master and not one another.

MB Megabytes of memory.

member An individual data value within an array of DeviceNet data bytes.

method An action performed on an instance to affect its behavior; the externally
visible code of an object. Within NI-DNET, you use NI-DNET functions to
execute methods for objects. Also known as service, operation, and action.

multi-drop A physical connection in which multiple devices communicate with one
another along a single cable.

N

network interface A device’s physical connection onto a network.

NI-DNET driver Device driver and/or firmware that implement all the specifics of a National
Instruments DeviceNet interface.

notification Within NI-DNET, an operating system mechanism that the NI-DNET
driver uses to communicate events to your application. You can think of a
notification of as an API function, but in the opposite direction.

Glossary

© National Instruments Corporation G-5 NI-DNET Programmer Reference Manual

O

object See instance.

object-oriented A software design methodology in which classes, instances, attributes, and
methods are used to hide all of the details of a software entity that do not
contribute to its essential characteristics.

ODVA Open DeviceNet Vendor’s Association

P

Peer-to-peer DeviceNet communication scheme in which each device communicates as
a peer and connections are established among devices as needed.

Polled I/O Master/slave I/O connection in which the master sends a poll command to
a slave, then receives a poll response from that slave.

protocol A formal set of conventions or rules for the exchange of information among
devices of a given network.

R

RAM Random-access memory.

remote Within NI-DNET, anything that exists in another device of the device
network (not on the same host as the NI-DNET driver).

resource Hardware settings used by National Instruments DeviceNet hardware,
including an interrupt request level (IRQ) and an 8 KB physical memory
range (such as D0000 to D1FFF hex).

S

s Seconds.

Scanned polling A polled I/O communication scheme in which all poll commands are sent
out at the same rate, in quick succession.

Glossary

NI-DNET Programmer Reference Manual G-6 © National Instruments Corporation

sensor A device that measures electrical, mechanical, or other signals from an
external, real-world variable; in the context of device networks, sensors are
devices that send their primary data value onto the network; examples
include temperature sensors and presence sensors. Also known as
transmitter.

Strobed I/O See bit strobed I/O

V

VI Virtual Instrument.

	NI-DNET™ Programmer Reference�Manual
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	How to Use the Manual Set
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 NI-DNET Data Types
	Chapter 2 NI-DNET Functions
	Using the Function Descriptions
	Purpose
	Format
	Input
	Output
	Function Description
	Parameter Description
	Return Status
	Examples

	List of NI-DNET Functions
	DeviceNet Error Handler
	ncCloseObject (Close)
	ncConvertForDnetWrite (Convert For DeviceNet Write)
	ncConvertFromDnetRead (Convert From DeviceNet Read)
	ncCreateNotification (Create Notification)
	ncCreateOccurrence (Create Occurrence)
	ncGetDnetAttribute (Get DeviceNet Attribute)
	ncGetDriverAttr (Get Driver Attribute)
	ncOpenDnetExplMsg (Open DeviceNet Explicit Messaging)
	ncOpenDnetIntf (Open DeviceNet Interface)
	ncOpenDnetIO (Open DeviceNet I/O)
	ncOperateDnetIntf (Operate DeviceNet Interface)
	ncReadDnetExplMsg (Read DeviceNet Explicit Message)
	ncReadDnetIO (Read DeviceNet I/O)
	ncSetDnetAttribute (Set DeviceNet Attribute)
	ncSetDriverAttr (Set Driver Attribute)
	ncStatusToString (Status To String)
	ncWaitForState (Wait For State)
	ncWriteDnetExplMsg (Write DeviceNet Explicit Message)
	ncWriteDnetIO (Write DeviceNet I/O)

	Chapter 3 NI-DNET Objects
	Explicit Messaging Object
	Interface Object
	I/O Object

	Appendix A Status Handling and Error Codes
	Handling Status in G (LabVIEW/BridgeVIEW)
	Checking Status
	Status Format

	Handling Status in C
	Checking Status
	Status Format

	NI-DNET Status Codes and Qualifiers
	NC_SUCCESS (0000 Hex)
	NC_ERR_TIMEOUT (0001 Hex)
	NC_ERR_DRIVER (0002 Hex)
	NC_ERR_BAD_PARAM (0004 Hex)
	NC_ERR_NOT_STOPPED (0007 Hex)
	NC_ERR_OLD_DATA (0009 Hex)
	NC_ERR_DEVICE_INIT (0010 Hex)
	NC_ERR_NOT_SUPPORTED (000A Hex)
	NC_ERR_CAN_COMM (000B Hex)
	NC_ERR_NOT_STARTED (000C Hex)
	NC_ERR_RSRC_LIMITS (000D Hex)
	NC_ERR_READ_NOT_AVAIL (000E Hex)
	NC_ERR_BAD_NET_ID (000F Hex)
	NC_ERR_DEVICE_MISSING (0011 Hex)
	NC_ERR_FRAGMENTATION (0012 Hex)
	NC_ERR_DNET_ERR_RESP (0014 Hex)

	Appendix B Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	Documentation Comment Form

	Glossary
	A
	B-D
	E-I
	K-N
	O-S
	V

	Figures
	Figure A-1. NI-DNET Error Cluster Example
	Figure A-2. Error Cluster Code Field
	Figure A-3. Status Format in C

	Tables
	Table 1-1. NI-DNET Data Types
	Table 2-1. NI-DNET Functions
	Table A-1. Determining Severity of Status
	Table A-2. Summary of Status Codes

